

Руководство по эксплуатации

Статический генератор реактивной мощности SVG (Static Var Generator)

FGI SCIENCE & TECHNOLOGY CO., LTD.

Содержание

1	Меры предосторожности		
	1.1	Мерыпредосторожности	2
	1.2	Стандарты проектирования	4
2	Обзор	продукции	5
	2.1	Реактивная мощность и гармоники	5
	2.2	Принцип работы SVG	6
	2.3	Особенности SVG	7
	2.4	Сферы применения SVG	7
	2.5	Шильдик	9
	2.6	Обозначение при заказе	.10
	2.7	Условия окружающей среды	.11
3	Констр	укция и принцип работы	.12
	3.1	Топология основной схемы устройства	.12
	3.2	Структура устройства	.13
	3.3	Введение в функции устройства	.15
4	Описан	не панели управления	.17
	4.1	Описание панели шкафа управления	.17
	4.2	Рабочие режимы устройства	.18
	4.3	Описание сенсорного экрана	.19
5	Описа	ние параметров функции	26
•	5.1	Группа – Базовые параметры.	.26
	5.2	Настройка параметров группы РІ	.31
	5.3	Группа входных клемм	.33
	5.4	Группа выходных клемм	.36
	5.5	Группа записи ошибок	.37
	5.6	Группа – параметры защит	.42
	5.7	Группа параметров связи	.43
	5.8	Группа заводских параметров	.45
6	Устано	вка и подключение	.46
	6.1	Установка шкафов	.46
	6.2	Установка высоковольтной части	.49
	6.3	Подключение клемм пользователя	.50
7	Пуск/о	становка в процессе эксплуатации	.54
-	7.1	Быстрый запуск устройства	.54
	7.2	Настройка параметров запуска	.56
	7.3	Блок-схема устройства остановки	.57
	7.4	Меры предосторожности	.57
8	Ошибк	и и способы устранения	.59
-	8.1	Системные ошибки	.59
	8.2	Ошибка звена цепи	.62
	8.3	Цепи байпаса (опция)	.63
	8.4	Действия после ошибки устройства	.65
	8.5	Общие неисправности и решения	.65
9	Обспул	кивание и хранение устройства	.69
•	9.1	Обзор	.69
	9.2	Техническое обслуживание	.69
	9.3	Хранение	.72

Предисловие

Благодарим Вас за покупку статического генератора реактивной мощности.

Статические генераторы реактивной мощности SVG (далее именуемые SVG) являются последними генераторами переменного тока третьего поколения, разработанными нашей компанией. Они могут широко применяться в электроэнергетике, новых энергетических установках, железнодорожном транспорте, металлургической промышленности и угледобывающей промышленности, чтобы улучшить коэффициент мощности системы, контролировать гармоники и подавлять колебания напряжения в сетке и трехфазный дисбаланс, улучшая качество питания системы и энергопотребление. Они могут снизить потребление энергии, улучшая безопасность использования энергии и очищая сетку. Внимательно прочитайте это руководство перед использованием SVG для обеспечения правильной работы. Неправильное использование может привести к неправильной работе или сокращению срока службы

Данное руководство применимо только для статических генераторов реактивной мощности FGI. Сохраните это руководство SVG, чтобы Вы могли ссылаться на него в любое время, когда Вам нужно.

Все права защищены FGI SCIENCE & TECHNOLOGY CO., LTD.

Версия: V1.0

Дата изменения: сентябрь 2018

Примечание. Данное руководство применимо к устройствам серии 6-10 кВ или другим устройствам (35 кВ или другим классам напряжения), из которых напряжение уменьшается до 6-10 кВ через силовые трансформаторы. Наша компания оставляет за собой право обновить данное руководство без предварительного уведомления. Если есть какое-либо расхождение между этим руководством и фактическим продуктом, немедленно свяжитесь с нашей компанией. Мы провели всесторонний обзор содержания этого руководства, однако ошибки могут быть неизбежны. Мы будем постоянно проверять содержание этого руководства и обновлять его соответственно в более поздних версиях.

1 Меры предосторожности

1.1 Меры предосторожности

Соглашения о предупреждающих знаках

4	Опасность: физическая травма или даже смерть могут произойти, если пренебречь.
\bigwedge	Предупреждение: существует опасное обстоятельство, и в случае пренебрежения могут возникнуть физические травмы или повреждения устройства.

О приложении

Прочтите и ознакомьтесь с этим руководством перед установкой, подключением, эксплуатацией и обслуживанием, чтобы обеспечить правильное использование. Вы должны понимать условия распределения высокого напряжения и все меры предосторожности при использовании устройства.

- ♦ Не переустанавливайте и не используйте SVG для других целей, иначе может возникнуть опасность повреждения устройства.
- ♦ В применениях, где могут возникнуть несчастные случаи или потери из-за неисправностей этого устройства, должны быть приняты соответствующие меры безопасности.

О транспорте

- ✤ Во время перемещения, транспортировки и размещения устройства убедитесь, что устройство находится в горизонтальном и ровном положении.
- ♦ При подъеме устройства убедитесь, что устройство поднимается / опускается плавно и медленно.
- ♦ Не бросайте (оставляйте) посторонние предметы, такие как остатки нитей, обрывки бумаги, металлические обломки или инструменты внутри SVG.
- ♦ Не устанавливайте и не запускайте SVG, если какой-либо из его компонентов поврежден.
- ♦ Установите защитные ограждения (с высоковольтными знаками опасности) и эти защитные ограждения не могут быть удалены, когда устройство работает.

Об установке

- ♦ Провода заземления должны быть сконфигурированы строго в соответствии с требованиями технического руководства, указанными в этом руководстве и национальными стандартами.
- ♦ Электромонтажные работы могут выполняться только профессиональными электриками.
- Перед началом работы вы должны убедиться, что в цепи управления и главной цепи нет входного напряжения.
- ✤ Кабели должны быть подключены в соответствии с инструкциями. Любое неправильное соединение может привести к повреждению устройства.
- ♦ Необходимо убедиться, что высоковольтный источник питания соответствует техническим характеристикам продукта.
- SVG должен быть установлен на огнестойких материалах, таких как металлический кронштейн и цементный пол.
- ♦ Не размещайте горючие материалы, включая чертежи устройств и руководства по эксплуатации внутри или рядом с корпусом SVG.

О подключении

- ♦ Провода заземления должны быть надежно подключены.
- Проводка должна проводиться под руководством наших профессиональных специалистов в соответствии с соответствующими стандартами электробезопасности.
- ♦ Проводка может быть выполнена только после правильной установки устройства.
- ♦ Вы должны подтвердить, что количество входных силовых фаз и номинальное входное напряжение соответствуют номинальным значениям генератора.
- Проводка должна соответствовать требованиям к изоляции и мощности в национальных или отраслевых стандартах.

О работе

- SVG может включаться только после того, как все двери электрического шкафа закрыты должным образом. Не открывайте дверцы шкафа после включения.
- Не прикасайтесь к выключателю влажными руками.
- Периферийная система должна обеспечивать надежную защиту оператора и устройства при перезагрузке.
- ♦ Не прикасайтесь к клеммам SVG при включении. Клеммы могут быть под напряжением, даже если SVG не работает.
- ♦ Не запускайте и не останавливайте SVG при включении или отключении основного питания.
- Шкаф управления и другие шкафы используют изолированное оптоволокно, для передачи сигналов управления и контроля. Тем не менее, только обученный и уполномоченный персонал может управлять данным оборудованием.
- Не выключайте вентилятор во время работы, иначе может произойти перегрев и повреждение системного устройства.
- ♦ Убедитесь, что место установки хорошо проветривается, а температура окружающей среды поддерживается в пределах 0 ° C-40 ° C.
- ♦ Операции с выключателем изоляции, соединительным реактором или трансформатором, вводным шкафом и шкафом агрегата должны соответствовать правилам работы с высоким напряжением.
- Изоляционный выключатель, соединительный реактор или трансформатор, вводной шкаф и шкаф агрегата классифицируются как зона высокого риска; не открывайте дверцу шкафа или не работайте на этих устройствах при подаче питания

О техническом обслуживании и замене деталей

- Техническое обслуживание, осмотр и замена деталей могут выполняться только квалифицированным персоналом в соответствии с соответствующими правилами эксплуатации.
- Не прикасайтесь к какой-либо детали внутри шкафа, пока не убедитесь, что нет напряжения или высокой температуры.
- Техническое обслуживание и проверка могут проводиться только после выключения питания высокого напряжения в течение 30 минут, а индикаторы подключения всех устройств отключены.
- Часто проверяйте, соответствует ли сопротивление заземлению требованиям к работе устройства и национальным стандартам; если сопротивление заземления не соответствует соответствующим требованиям, может возникнуть опасность поражение эл. током.

Об утилизации

♦ Неисправные детали и компоненты должны утилизироваться как промышленные отходы.

1.2 Стандарты проектирования

Конструкция и производство SVG относятся к последним национальным стандартам (GB или GB / T) в качестве самых низких технических требований к конструкции с соответствующими техническими параметрами, соответствующими национальным стандартам (GB или GB / T)

В следующей таблице описаны некоторые технические стандарты, на которые ссылаются в проекте.

GB/T 2423-2008	Environmental testing for electric and electronic products	
GB 50052-2009	Code for design electric power supply system	
GB/T 11022-1999	Common specifications for high-voltage switchgear and control gear standards	
GB 1985-2004	High-voltage alternating-current disconnectors and earthing switches	
GB/T 12326-2008	Power quality-Voltage fluctuation and flicker	
GB/T 15543-2008	Power quality—Three-phase voltage unbalance	
GB/T 15945-2008	Power quality—Frequency dethroughtion for power system	
GB/T 18481-2001	Power quality—Temporary and transient over voltages	
DL/T1010.1~1010.5-2006	High-voltage static var compensator Part 1–5	
GB 4208-2008	Degrees of protection provided by enclosure (IP code)	
GB/T 14537-1993	Shock and bump tests on measuring relays and protection equipment	
GB/T 14598.10-2007	Electrical relays—Part 22-4:Electrical disturbance tests for measuring relays and protection equipment—Electrical fast transient/burst immunity test	
GB/T 14598.13-2008	Electrical relays—Part 22-1:Electrical disturbance tests for measuring relays and protection equipment—1 MHz burst immunity tests	
GB/T 14598.14-2010	Measuring relays and protection equipment—Part 22-2:Electrical disturbance tests—Electrostatic discharge tests	
GB/T 14598.3-2006	Electrical relays—Part 5:Insulation coordination for measuring relays and protection equipment—Requirements and tests	
GB 14598.27-2008	Measuring relays and protection equipment - Part 27: Product safety requirements	
GB/T 2423-2008	Environmental testing for electric and electronic products	

2 Обзор продукции

2.1 Реактивная мощность и гармоники

2.1.1 Проблема реактивной мощности

Резистивные и индуктивные нагрузки составляют значительную долю потребления энергии на производстве и в домашних хозяйствах. Синхронные двигатели, трансформаторы и люминесцентные лампы являются резистивными и индуктивными нагрузками. Реактивная мощность, потребляемая асинхронными двигателями и трансформаторами, составляет значительную часть реактивной мощности, обеспечиваемой энергосистемой, в то время как реакторы и воздушные линии в энергосистеме также потребляют некоторую реактивную мощность. Кроме того, некоторые нелинейные устройства, такие как электрические и электронные устройства, также потребляют некоторую реактивную мощность. Различные устройства управления фазой, такие как выпрямители управления фазой, в частности, могут потреблять большое количество реактивной мощности в работе, поскольку основной ток отстает от напряжения сети. С другой стороны, когда нагрузка сети небольшая, то напряжение на конце линии передачи сети часто увеличивается из-за эффекта емкости, что может оказать неблагоприятное воздействие на электрооборудование.

Увеличение реактивной мощности в сети может повлиять на сеть, как описано ниже:

(1) Ток и мощность увеличиваются, что увеличивает пропускную способность проводов, генераторов, трансформаторов и других электрических устройств. Поэтому необходимо также увеличить размеры и характеристики устройств запуска и управления, а также измерительных приборов энергетических пользователей.

(2) Общий ток увеличивается, в результате чего потребление устройств и цепей увеличивается.

(3) Напряжение цепи и трансформатора увеличивается; если это перенапряжение реактивной мощности, напряжение может сильно колебаться, что приводит к серьезному ухудшению качества электропитания.

Реакция традиционных устройств компенсации реактивной мощности медленная. Они не могут выполнять свои функции своевременно, не могут удовлетворять требованиям реактивной мощности системы и, таким образом, вызывать нестабильность напряжения системы. Напротив, быстрый ответ динамических устройств компенсации реактивной мощности может эффективно улучшить стабильность напряжения в системе и, таким образом, улучшить качество электрической энергии.

2.1.2 Гармоники

Ферромагнитные устройства, электродуговые устройства и электронные / электрические устройства являются основными источниками, которые вызывают гармоники в энергосистемах. Ферромагнитные устройства включают в себя трансформаторы и роторные двигатели, в то время как электродуговые устройства включают в себя электродуговые печи, электродуговые сварки и устройства разрядного освещения, такие как люминесцентные лампы. Оба эти типа являются пассивными гармоническими источниками, а их нелинейность определяется физическими особенностями насыщения ядра и электрической дуги. Электронные / электрические устройства в основном включают в себя источники питания бытовой техники и ПК, двигатели с регулируемой скоростью переменного / постоянного тока, источники питания постоянного тока, зарядные устройства и другие устройства для выпрямления / инвертирования. Этот тип гармонических источников активен, а их нелинейность определяется процессом ВКЛ / ВЫКЛ электрических полупроводниковых приборов. При все более широком применении и большой мощности электронных / электрических устройств гармоники, генерируемые электронными / электрическими устройствами, составляют все больщую долю. Электронные / электрические устройства стали основным источником загрязнения энергетических систем.

С увеличением использования этих нелинейных нагрузок гармоническая проблема становится все более серьезной. Ущерб, вызванный гармониками, главным образом заключается в следующих аспектах:

(1) Дополнительное потребление гармоник вызвано устройствами в сети, что снижает эффективность производства и передачи электроэнергии и электрооборудования при использовании мощности.

(2) Генерируется дополнительный тепловой эффект, в результате чего электрическое оборудование, такое как вращающиеся двигатели, конденсаторы и трансформаторы, генерирует тепло, что приводит к старению изоляции

и сокращению срока службы или даже к повреждению устройств.

(3) Происходит срабатывание защитных устройств, таких как устройства релейной защиты и предохранители.

(4) Производится неточное измерение электрических измерительных приборов.

(5) Взаимодействие с соседними электронными устройствами и системами связи вызванное в режиме электромагнитной индукции снижает качество передачи сигнала, прерывает передачу сигнала и даже повреждает устройства связи.

(6) Возможность системного резонанса значительно возрастает. Гармоники могут легко вызывать параллельный или последовательный резонанс между сетью и компенсирующими конденсаторами, усиливая гармонический ток в несколько раз или даже десятки раз, что вызывает перегрузку и повреждение конденсаторов, а также реакторов и резисторов, подключенных к конденсаторам.

Вред, причиняемый гармониками, становится все более очевидным, что заставляет энергетические компании вводить строгие ограничения на количество гармонического тока, генерируемого крупными потребителями, для решения проблем качества электрической энергии, вызванных гармоническими искажениями.

2.2 Принцип работы SVG

Высоковольтные статические генераторы переменного тока являются одним из основных устройств гибких систем передачи переменного тока (FACTS), которые представляют собой новую тенденцию развития технологии компенсации реактивной мощности нынешней энергосистемы. SVG используют IGBT для формирования коммутируемых мостовых схем для параллельного подключения к сетке. Вы можете включить мостовую схему для поглощения или высвобождения реактивного тока для реализации компенсации динамической реактивной мощности путем регулировки положения фазы и амплитуды выходного напряжения переменного тока или контроля тока переменного тока мостовой схемы.

Таблица 2-1 Принцип работы SVG

Режим работы	Принцип работы - диаграмма	Схема сигнала	Фазовая диаграмма	Описание
Режим работы - холостой ход	Система	С С С С С С С С С С С С С С С С С С С		Когда UI = IS, SVG не компенсирует.
Емкостной режим работы	SVG	и Пережающий Ток UDU	$ \begin{array}{c} I_{\perp} \\ \downarrow \\ \hline U_{s} \\ \downarrow \\ \hline U_{l} \end{array} $	Когда UI>US, SVG эквивалентен непрерывно регулируемому конденсатору.
Индуктивный режим работы		U, П. Отставание тока Uк <us< td=""><td>$\bigcup_{i} \bigcup_{j \neq l} \bigcup_{i} \bigcup_{j \neq l} \bigcup_{i}$</td><td>Когда UI<us, SVG эквивалентен непрерывно регулируемой</us, </td></us<>	$\bigcup_{i} \bigcup_{j \neq l} \bigcup_{i} \bigcup_{j \neq l} \bigcup_{i}$	Когда UI <us, SVG эквивалентен непрерывно регулируемой</us,

2.3 Особенности SVG

FGI SVG представляют собой новейшие технологии в области компенсации реактивной мощности. SVG формируется преобразователем источника напряжения, подключенным к системе, и его реактивный ток может мгновенно изменяться с изменением реактивного тока нагрузки, автоматически компенсируя реактивную мощность, требуемую системой.

2.3.1 Функции SVG

Основные функции SVG:

(1) Компенсация реактивной мощности системы и улучшение коэффициента мощности

(2) Уменьшение потерь на линях и улучшение пропускной способности схемы

(3) Динамическая компенсация гармоник для повышения качества электрической энергии

(4) Подавление колебаний напряжения и мерцание

(5) Поддержание напряжения на приемной стороне для повышения стабильности напряжения в системе

(6) Подавление трехфазного дисбаланса сети.

2.3.2 Технические характеристики SVG

SVG - это устройство компенсации, основанное на инверторе источника напряжения. Он реализует преобразование квадранта через высокочастотный переключатель мощных электронных / электрических устройств вместо использования конденсаторов большой емкости и индуктивных устройств, что является качественным скачком режима компенсации реактивной мощности. Технические характеристики SVG описаны ниже:

(1) Диапазон регулировки реактивной мощности: непрерывная регулировка от номинальной емкостной реактивной мощности до номинальной индуктивной реактивной мощности

(2) Время отклика: <5 мс

(3) Эффективность работы:> 99%

(4) Гармоники выходного напряжения: THD<3%

(5) Функции защиты: перенапряжение, минимальное напряжение, перегрузка по току, предел тока, перегрев, IGBT и т. Д.

(6) Степень защиты: ІР20

(7) Поддержка резервной работы каждой фазы N-1

(8) Поддержка параллельной работы нескольких SVG для реализации расширения мощности; обеспечивание функций контроля состояния нескольких машин. Для реализации этих функций параметры производителя потребуется изменить. Обратитесь к производителю.

(9) HMI: интерфейс сенсорного экрана на английском/русском языке, который может использоваться для отображения и установки основных рабочих параметров системы, параметров работы SVG, рабочего состояния, индикации неисправности и т. д.

2.4 Сферы применения SVG

1.Региональная сеть

Энергоемкие промышленные нагрузки составляют значительную долю общих энергетических нагрузок в Китае, таких как черная металлургия, нефтехимическая промышленность и т. Д. Большинство из этих крупных поромышленных потребителей имеют свои собственные системы. Отдел энергоснабжения наложил ограничения на технические спецификации, такие как коэффициент мощности и качество электроэнергии для этих крупных пользователей. Установив систему SVG для выполнения комплексной компенсации реактивной мощности на своих внутренних сетях, эти крупные пользователи могут удовлетворять требованиям энергосистемы по коэффициентам мощности и качеству электроэнергии, а также могут снизить потребление энергии. Обычными промышленными пользователями являются крупные сварочные аппараты, крупные деревообрабатывающие

заводы, тяжелые шлифовальные машины, шахтные тали и крупные портовые краны.

2. Ветряная электростанция

Неопределенность ветровых ресурсов и эксплуатационные характеристики генераторов ветровой турбины вызывают колебания выходной мощности генераторов, что может привести к таким проблемам, как малый коэффициент мощности, связь с сетью, падение напряжения, колебания напряжения. Когда ветряная электростанция большой мощности подключается к энергосистеме, может также возникнуть проблема стабильности. Во всех этих случаях требуется система компенсации динамической реактивной мощности. С другой стороны, колебания напряжения системы также влияют на правильную работу вентиляторов. SVG - идеальный выбор для компенсации мощности ветровой электростанции. Он не только соответствует коэффициенту мощности, колебаниям напряжения на ветряной электростанции для подключения к энергосистеме, но также уменьшает влияние возмущений системы на вентиляторы. При использовании в сочетании с конденсаторами и реакторами комплексная система компенсации, основанная на SVG, может обеспечить более высокую производительность при меньших затратах; кроме того, мобильность и расширяемость SVG позволяют расширить систему компенсации реактивной мощности соответственно со строительством ветряной электростанции.

3. Прокатный стан

Реактивное воздействие, создаваемое прокатными станами и другими промышленными симметричными нагрузками, может вызвать падение напряжения в сети и колебания напряжения или даже повлиять на правильную работу электрических устройств, что снижает эффективность производства и мощности фактора и заставляет приводные устройства нагрузки генерировать вредные высшие гармоники. Эти высокие гармоники в основном представляют собой гармоники нечетного порядка и боковую частоту, представленную 5-м, 7-м, 11-м и 13-м порядками, что вызывает серьезные искажения напряжения сети. Системы SVG могут решить эти проблемы, поддерживая стабильное напряжение на шине, устраняя гармонические помехи и приближая коэффициент мощности к 1. Возможности компенсации реактивной мощности устраняя гармоники, позволяет SVG стать первым выбором компенсации реактивной мощности для промышленных пользователей, таких как прокатные станы.

4. Электродуговая печь

Электродуговая печь имеет нелинейную и нерегулярную нагрузку, когда она подключена к сетке, может вызвать серьезный 3-фазный дисбаланс и ток обратной последовательности в сети. Это может также вызвать более высокие гармоники (обычно как гармоники четного порядка, такие как гармоники 2-го и 4-го порядка, так и гармоники нечетного порядка, такие как гармоники 3-го, 5-го и 7-го порядка), вызывая более сложное искажение напряжения и низкий коэффициент мощности. Единственный способ полностью решить эти проблемы - установить SVG с быстрым откликом. Время отклика системы составляет менее 5 мс, что полностью отвечает строгим техническим требованиям, обеспечивает реактивный ток в электродуговой печи и стабилизирует напряжение в сети, чтобы увеличить выход активной мощности, повысить эффективность производства и снизить влияние искажений в максимальной степени. Функция компенсации раздельной фазы SVG может устранить за-фазный дисбаланс, вызванный электродуговыми печами, а фильтрующее устройство может устранить вредные высшие гармоники и повысить коэффициент мощности за счет обеспечения емкостной реактивной мощности для системы.

5. Система электроснабжения электровоза

Режим работы электровоза при транспортировке грузов может вызвать серьезное «загрязнение» сети, поскольку электрический локомотив использует однофазное питание, что вызывает серьезный 3-фазный дисбаланс и низкий коэффициент мощности и генерирует ток обратной последовательности. В настоящее время единственным способом решения этих проблем является установка SVG вдоль железной дороги для использования функции компенсации разделения фазы SVG для балансировки трехфазной сетки и повышения коэффициента мощности. Когда тяговая система подключена к слабой сети, мощность электропитания тяги может быть значительно улучшена за счет использования возможности поддержки напряжения SVG, и, следовательно, может быть улучшена скорость использования тягового трансформатора, а низкочастотные колебания системы могут быть подавлено. SVG может решить эти проблемы благодаря высокоэффективным техническим характеристикам.

6. Подъемные механизмы

Подъемные механизмы при работе могут привести к падению напряжения в сети во время работы, что может снизить коэффициент мощности. Кроме того, приводные устройства могут генерировать большое количество вредных высших гармоник. SVG может стабилизировать напряжение сетки, увеличить коэффициент мощности и управлять более высокими гармониками и, таким образом, решить проблемы с сетью, возникающие во время работы.

2.5 Шильдик

Рис.2-1 Шильдик SVG

2.6 Обозначение при заказе

Рис.2-2Обозначение при заказе SVGs

Таблица2-2Описание обозначения при заказе

SN	Наименование	Описание
1	Название продукта	SVG Статический генератор реактивной мощности
2	Мощность устройства (MBA)	0M5: 0.5MBA 002: 2MBA 4M5: 4.5MBA
3	Напряжение	06: 6кВ 10: 10кВ 35: 35кВ
4	Электрическая конструкция	С: Тип сети В: Увеличение
5	Количество компенсирующих фаз	Т: Трехфазная компенсация S: Однофазная компенсация
⑥ Структура		L: представляет собой малую емкость интегрированной машинной структуры; Значение по умолчанию в этом поле - L.
7	Подключение	Y: Подключение «Звезда» T: Подключение «Треугольник» Примечание. Подключение типа Y является стандартным подключением, поле по умолчанию
8	Охлаждение	А: Воздушное охлаждение W: Водяное охлаждение Примечание: Воздушное охлаждение – стандартное, поле по умолчанию

	Установка	I: Установка в помещении
0		С: Установка в контейнере
3		Примечание. Установка в помещении – это стандартная установка, то
		есть значение по умолчанию в этом поле: I.

2.7 Условия окружающей среды

Таблица 2-3 Описание необходимых экологических условий для эксплуатации.

Таблица 2-3Необходимые условия окружающей среды для работы

Пункт	Условия		
	Установка в вертикальном положении в помещении на прочном основании, и		
	пространство минимум 1000 мм должны быть зарезервированы на каждой из		
место установки	левой и правой стороны корпуса генератора. Средством охлаждения является		
	воздух.		
	Генератор работает должным образом при температуре -5° с до + 40 ° С, где		
Температура	скорость изменения температуры менее чем 0.5 ° С/м. Снижение мощности при		
окружающей среды	температуре выше 40 ° C, на 2% за каждый дополнительный 1 ° C.		
	Максимальная температура составляет 50° С		
Относительная	59/ 009/		
влажность	5%-90%		
Другие	Без конденсата, мороз, дождь, снег или град, и т.д.		
климатические	Солнечное излучение— меньше чем 700 Вт/м ² .		
условия	Давление воздуха составляет 70 кПа – 106 кПа.		
	Генератор работает правильно на высоте ниже 1000 м.		
Высота	Если она превышает 1000 м, возможно снижение номинальной мощности.		
	Для получения дополнительной информации обратитесь к производителю.		

3 Конструкция и принцип работы

3.1 Топология основной схемы устройства

SVG использует усовершенствованную структуру топологии цепей и соединяется с сетью параллельно через реакторы или трансформаторы. Нет необходимости менять основную проводку системы. Вам нужно только подключить генератор компенсации к сети.

Здесь мы приводим пример топологии основной схемы устройства в корпусе 10 кВ SVG. Устройство SVG 10 кВ состоит из 12 звеньев цепи устройства, соединенных последовательно, и каждая цепь цепи устройства связывается с основной системой управления через оптическое волокно. Основная система управления собирает напряжение и ток со стороны устройства и стороны сетки соответственно, реализует сетевое соединение через КМ1 и КМ2 и взаимодействует с сенсорным экраном HMI через протокол UDP / IP. Основная система управления может обеспечивать многоканальные терминалы ввода-вывода. Топология основной схемы устройства показана на рис. 3-1.

Рис.3-1Топология основной схемы устройства10 кВ SVG

Данное устройство использует структуру топологии H-типа с надежной технологией. Такая структура топологии цепного типа значительно повышает надежность, гибкость и удобство обслуживания SVG. На следующем рисунке показана топологическая структура цепной связи устройства цепного статического генератора реактивной мощности var.

Рис.3-2 Топология канала SVG

3.2 Структура устройства

SVG состоит из шкафа управления, шкафа блока, вводного шкафа, соединительного реактора или трансформатора и изолирующего выключателя, среди которых шкаф агрегата сконфигурирован с вентилятором сверху для принудительного охлаждения воздуха. Рис. 3-3 и Рис. 3-4 показана структурная схема SVG.

Рис.3-3Структурная схема SVG (6кВог10 кВ)

Рис.3-4 Структурная схема SVG (35кВ)

3.2.1. Шкаф управления

Шкаф управления – это центр управления SVG. Он использует независимый источник питания ИБП с двумя входами питания (основная и резервная мощности). Когда основное питание выходит из строя, система автоматически переключается на резервное питание. Когда ИБП поврежден, то есть еще один канал основной и резервной мощности, который может нормально работать, шкаф управления будет питаться от основной или резервной мощности. Когда ИБП или какая-либо из основной / резервной мощности неисправна, система генерирует сигнал тревоги. Таким образом, это гарантирует, что система может использоваться в сложных условиях.

Входными сигналами шкафа управления являются: сигнал состояния контактора (или разъединителя) входящего шкафа, напряжение ввода-вывода, сигнал обнаружения тока, сигнал обратной связи по каждому звену цепи устройства и работа с панелью управления.

Статический генератор реактивной мощности SVG

Выходными сигналами шкафа управления являются: управляющий сигнал (оптоволокно) цепи устройства, управляющий сигнал вентилятора и сигнал управления контактором входящего шкафа.

Паспорт продукта, сенсорный экран, индикатор (включая готовность, работа, неисправность), кнопка аварийного останова, дистанционный (переключатель) тумблер, программируемые клеммы доступные для пользователей, установлены в шкафу управления.

Шкаф управления используется для управления SVG для реализации ожидаемой цели управления, мониторинга состояния системы и связи с верхним компьютером. Его надежная работа обеспечивает безопасную и надежную работу всей системы.

3.2.2. Шкаф устройства

Шкаф устройства используется для установки звеньев цепи устройства, которые размещаются в нескольких параллельных шкафах в виде горизонтального последовательного соединения. Шкаф управления управляет действием каждой цепи устройства через оптоволоконную связь.

Цепи устройства содержит плату управления, IGBT-модуль, мембранный конденсатор и радиатор и т. д. Плата управления принимает управляющий сигнал, посылаемый из основной системы управления, затем генерирует триггерный импульс через декодирование для управления включением / выключением IGBT и производит ожидаемый ток компенсации. Плата управления также обеспечивает обнаружение напряжения на стороне постоянного тока, обнаружение неисправностей и функции связи. Состояние напряжения постоянного тока, обнаруженное на плате управления, загружается в основную систему управления через функцию связи.

Обнаружение неисправностей в цепях устройства включает в себя перенапряжение со стороны постоянного тока и повышенную температуру цепи для защиты устройства. Когда обнаружена неисправность устройства, устройство будет немедленно защищено и информация о неисправности будет отправлена в систему управления.

3.2.3. Вводной шкаф

Вводной шкаф состоит из контактора переменного тока KM1, KM2 и зарядных резисторов. Контактор переменного тока KM1 и зарядный резистор R образуют централизованную схему предварительной зарядки, а высокое напряжение заряжает каждую цепь устройства через резистор R. Когда цепи устройства заряжается до нормального напряжения, контактор KM1 отключит резистор R и система войдет в состояние готовности.

3.2.4. Подключение реактора или трансформатор

Соединительный реактор или трансформатор играет жизненно важную роль в системе SVG. Его приоритетом является буферизация разницы между напряжением сети и выходным напряжением инвертора и подача реактивного тока в сеть через реакторы, а также уменьшение пульсаций выходного тока SVG при переключении и синфазных помех. Соединительный дроссель может быть установлен внутри или снаружи шкафа в зависимости от его конструкции. Конкретный режим установки зависит от технического соглашения и физического продукта.

3.2.5. Изолирующий выключатель

При проведении осмотра устройства изолирующий выключатель обеспечивает гарантию безопасности. Изолирующий выключатель может отделить устройство от системы и обеспечить очевидную точку разъединения, в то время как разъединитель заземления гарантирует, что входная сторона устройства находится в состоянии заземления. Как правило, когда соединительный реактор установлен внутри шкафа, изолирующий выключатель устанавливается внутри вводного шкафа; когда силовой трансформатор или реактор установлены вне шкафа, изолирующий выключатель устанавливается между сетью и силовым трансформатором или реактором снаружи шкафа. Конкретный режим установки зависит от технического соглашения.

Рис.3-5 Внешний вид SVG (в зависимости от конкретного решения)

3.3 Введение в функции устройства

SVG использует усовершенствованную топологическую структуру цепи, которая может компенсировать реактивную мощность и гармоники. Система управления использует трехъядерную (DSP + FPGA + MCU) технологию цифровой обработки для обеспечения надежной работы и значительно улучшает скорость ответа, самозащиту и коммуникационную способность устройства.

Основные функции SVG:

1. Режим работы устройства

Устройство поддерживает несколько видов режимов компенсации, как показано ниже:

- 1) Режим постоянной реактивной нагрузки
- 2) Режим реактивной нагрузки
- 3) Режим постоянного напряжения
- 4) Режим постоянной мощности
- 5) Режим компенсации реактивного напряжения
- 2. Канал управления командами

Устройство поддерживает несколько режимов управления, как показано ниже:

- 1) Режим «Местного» управления
- 2) Порт для подключения к сети (опция)
- 3) Режим управления по протоколу связи MODBUS
- 4) Режим управления от клемм I/O
- 5) Режим управления по Fieldbus
- 3. Функция компенсации гармоник

Устройство может компенсировать гармоники.

4. Интерфейс пользовательского терминала

Устройство оснащено множеством портов ввода / вывода: четыре аналоговых выхода, шесть цифровых входов, шесть релейных выходов и все порты ввода / вывода программируются для пользователей, чтобы использовать эти порты для создания собственной системы приложений, тем самым обеспечивая хорошую расширяемость.

5. Защитные функции при работе

Устройство обеспечивает множество функций защиты, а некоторые функции могут быть гибко конфигурированы через функциональные кодовые параметры, например: перегрузка, перенапряжение, перегрузка по току, пониженное напряжение, дисбаланс сетки и т. Д. Подробнее см. Описание кода функции.

6. Функция записи ошибок

Устройство обеспечивает многочисленные функции записи ошибок (неисправностей), в которых имеется 13 видов информации об ошибках (неисправностях) относящихся к устройству. Эта информация о неисправности может быть просмотрена функциональными кодами группы параметров ошибок.

Когда произошел сбой, SVG может автоматически записывать последние три ошибки, и пользователи могут проверять подробную запись о неисправности с помощью сенсорного экрана. Нажмите «запись истории», чтобы отобразить информацию об ошибке (неисправности) и время всех записей.

7. Функция осциллограф

Устройство может отображать данные осциллограммы в реальном времени переменных, например, совокупность переменных, А-фазы сети переменного тока и коэффициента мощности сети, обеспечивая тем самым нормальные условия работы устройства для пользователей.

8. Функции протокола связи MODBUS

Устройство SVG поддерживает стандартный протокол связи MODBUS. Пользователи могут управлять и устанавливать SVG через протокол MODBUS с помощью собственной системы. Подробные сведения о MODBUS см. В описаниях функциональных кодов и в Приложении 2.

9. Функция связи UDP

Устройство поддерживает протокол связи UDP. Сенсорный экран на панели шкафа управления подключен к стандартному сетевому порту основной платы управления и связывается с основной панелью управления через протокол связи UDP для управления работой системы; основная плата управления обеспечивает функцию расширения сетевого порта (опция), а верхняя компьютерная программа управляет работой системы через внутренний сетевой порт, а также через удаленный терминал.

4 Описание панели управления

4.1 Описание панели шкафа управления

Панель шкафа управления устройством обеспечивает интерфейс HMI для пользователей, работающих на устройстве. Панель шкафа управления сконфигурирована с ЖК-дисплеем, индикатором состояния, кнопкой аварийного останова и переключателем режимов управления «дистанционное / локальное». Когда переключатель режимов управления находится в положении «локальное», SVG может управлять только локальным каналом управления, в то время как в дистанционном состоянии он может управлять через дополнительный сетевой порт (опция), терминал, MODBUS и каналы управления по полевой шине.

Расположение элементов панели шкафа управления показано на рисунке. 4-1:

Рис.4-1 Схема панели шкафа управления

Подробные описания для каждого компонента на панели шкафа управления показаны ниже:

Таблица 4-1 Описание для каждого элемента на панели шкафа управления

Тип	Описание	Функция
	READY\Готовность	После того, как шкаф управления включен, если самоконтроль устройства выполнен, подайте высокое напряжение на зарядку, и когда зарядка будет завершена, загорится индикатор READY, что означает, что пользователям разрешено выполнять операцию с сетью. После работы устройства с подключением к сети индикатор READY будет отключен. Индикатор готовности горит, а устройство
Индикатор		не имеет неисправности, индикатор готовности горит.
	RUN\Paбota	Указывает, находится ли устройство в режиме работы с сетью. Индикатор RUN включается после подключения устройства к сети и выключается после выхода из устройства. Во время работы устройства индикатор RUN горит.
	FAULT\Ошибка	Указывает, что устройство неисправно. Когда произошел сбой, индикатор неисправности горит, если это серьезная

Тип	Описание	Функция
		ошибка, высокое напряжение будет отключено, и устройство отделится от сети. После сброса и снятия ошибки индикатор неисправности будет отключен.
Сенсорный экран	LCD Сенсорный экран	LCD сенсорный экран, который позволяет пользователю контролировать состояние, задавать параметры, управлять операциями и проверять неисправности без клавиатуры.
	Кнопка аварийной остановки	Нажмите эту кнопку, чтобы отключить устройство от сети.
Кнопка/переключатель	Переключатель «Дистанционное\Локальное»	Пользователи могут выбирать канал команд устройства через переключатель «Дистанционное\Локальное». В дистанционном режиме пользователи могут управлять через дополнительный сетевой порт (дополнительный), терминал, MODBUS и канал управления по полевой шине; в локальном состоянии пользователи могут управлять только через локальный канал управления.

Примечание. Если выход устройства будет увеличен до 35 кВ через трансформатор, на панели шкафа управления будет установлен экран управления и контроля трансформатора.

4.2 Рабочие режимы устройства

Рабочие режимы SVG: сон, готовность, запуск, блокировка и ошибка. Инструкции и описания каждого режима показаны ниже:

Режим «Сон»:

Устройство работает с электрическим управлением вместо высокого напряжения, КМ2 не включается, самоконтроль устройства является нормальным, а устройство переходит в режим «Сон».

Режим «Готовность:

После режима «Сон», КМ2 включается и подается высокое напряжение, устройство входит в состояние зарядки и заряжает конденсатор постоянного тока через зарядный резистор. После того, как время ожидания подготовки заканчивается, общее напряжение постоянного тока соответствует пределу включения КМ1, КМ1 замыкается для обхода зарядного резистора, устройство выполняет самопроверку, и если нет неисправности, загорается индикатор READY, и устройство переходит в состояние готовности. Время ожидания выполнения подготовки устанавливается «Группа параметров защиты» -> «Время ожидания подготовки к запуску», значение по умолчанию - 12 с.

Режим «Работа»:

После режима «Готовность» и при отсутствии ошибок, и устройство ожидает выполнения команды. Переключатель режимов управления «Дистанционное\Локальное», находится в положении «Локальное», нажмите кнопку запуска на сенсорном экране, чтобы отправить управляющую команду в систему управления. После получения команды управления запуском устройство переходит в состояние готовности к сети, и загорается индикатор RUN.

Устройство находится в режиме подключения к сети, и оно может выводить ток в различных режимах управления для компенсации переменного тока, отрицательной последовательности или гармоник. Нажмите кнопку остановки на сенсорном экране, и устройство снова войдет в состояние готовности. Если во время этого процесса возникла неисправность, загорается индикатор неисправности, устройство перестает работать, индикатор RUN выключен, KM2 и KM1 выключаются, устройство переходит в состояние ошибки (неисправности).

Режим «Блокировка»:

В рабочем состоянии, если возникают незначительные неисправности, например, перегрузка по току, внешняя неисправность, неисправность вентилятора, неисправность датчика температуры реактора, устройство переходит в состояние блокировки. В этом состоянии индикатор RUN загорается, если незначительная ошибка удаляется, после автоматического сброса или ручного сброса устройство продолжает работать и возвращается в рабочее состояние. Если неисправность не устраняется после того, как произошел автоматический или ручной сброс, то устройство переходит в режим «Блокировка».

Режим «Ошибка»:

Если устройство находится в режиме «Блокировка», загорается индикатор неисправности, а сенсорный экран отображает состояние неисправности. Пользователи могут проверить неисправность в группе параметров неисправности с помощью настройки параметров. После устранения неисправности нажмите кнопку сброса неисправности на сенсорном экране, если включено высокое напряжение KM2, устройство снова переходит в состояние готовности, если высокое напряжение KM2 выключено, устройство переходит в состояние ожидания после сброса.

Помимо индикаторов состояния на сенсорном экране, три индикатора на панели шкафа управления могут также указывать текущее рабочее состояние устройства. При любых обстоятельствах загорается только один индикатор. Связь между индикатором и состоянием показана ниже.

Индикатор	Состояние устройства			
Все выключено	Режим «Сон» или электрическое управление не применяется			
Индикатор READY (желтый)	Режим «Готовность»			
Индикатор RUN (зеленый)	Режим «Работа»			
Индикатор FAULT (красный)	Режим «Ошибка			

Таблица4-2 Взаимосвязь между индикаторами и состоянием устройства

4.3 Описание сенсорного экрана

Сенсорный экран SVG взаимодействует с основной панелью управления по протоколу связи EthernetUDP. После включения питания сенсорный экран сначала выдает основной рабочий интерфейс, как показано на рисунке. 4-3, и пользователи регистрируются в системе как оператор по умолчанию. Интерфейс может отображать текущее состояние, но не поддерживает настройку параметров. Пользователи могут нажать кнопку «Выход» на сенсорном экране, чтобы войти в интерфейс пользователя, как показано на рисунке. 4-4. Выберите имя пользователя и введите пароль для входа. После входа в систему сенсорный экран возвращается к основному интерфейсу. Пользователи могут щелкнуть соответствующую кнопку в главном интерфейсе для выполнения различных операций.

Для некоторых операций установки после нажатия кнопки выводятся определенные интерфейсы, которые называются суб-интерфейсом (дополнительным). Нажмите соответствующие кнопки в суб-интерфейсе, некоторые интерфейсы также вынут соответствующие интерфейсы для работы, поэтому суб-интерфейсы разделены на разные уровни. Чтобы дифференцировать интерфейсы, основной интерфейс называется основным интерфейсом, а суб-интерфейс, выскоченный в основном интерфейсе, называется вторичным интерфейсом и так далее.

Для области настройки значения после нажатия на нее выдается общий интерфейс настройки для ввода пользователем номеров, такой интерфейс называется общим интерфейсом и не относится к категории субинтерфейсом.

1. Основной рабочий интерфейс сенсорного экрана

Рис.4-2 Основной рабочий интерфейс сенсорного экрана

	iSVG		
	.og in		
TEL: 400-700-9997	www.invt.com.cn	V2. 40. 04	

Рис.4-3 Интерфейс входа сенсорного экрана

Таблица 4-3 Основной рабочий интерфейс сенсорного экрана

No.	Область	Кнопки и содержание	Содержание
1	Настройка	Кнопка «Настройка параметра»	Дополнительный интерфейс настройки параметров содержит девять групп функций. Пользователи могут устанавливать коды функций в выпадающем функциональном интерфейсе и проверять значение кодов функций.
2	Истории	Кнопка записи работы	Запишите предыдущую текущую информацию SVG
	herepin	Кнопка записи ошибки	Запишите предыдущую информацию о неисправности SVG
3	Данные в режиме реального времени	Кнопка запуска данных	Отображение текущей информации о работе SVG в режиме реального времени
4	Осциллограф	Кнопка осциллографа	Форма волны отображает динамическую информацию о текущих данных SVG
5		Кнопка включения / выключения KM2	Включение / выключение высокого напряжения
	Управление	Кнопка запуска	В режиме готовности к работе нажмите эту кнопку, чтобы запустить SVG
		Кнопка останова	В режиме RUN нажмите эту кнопку, чтобы остановить SVG
		Кнопка сброса	В состоянии сбоя нажмите эту кнопку, чтобы сбросить ошибку SVG
6	Выход	Кнопка выхода	Нажмите эту кнопку, чтобы выйти из текущего пользователя и ввести интерфейс входа в систему
7		Отображение состояния работы	Отображение текущего состояния работы SVG
	Состояния устройства	Текущая ошибка / аварийный сигнал	В состоянии ошибки / тревоги отображает текущий тип ошибки (неисправности) / тревоги SVG
		Локальный / удаленный дисплей	Отображает работают ли RUN, STOP и RESET локально или удаленно

2. Интерфейс входа сенсорного экрана

После включения SVG отобразится основной интерфейс. Пользователь может нажать кнопку «Выход» для выхода из основного интерфейса, сенсорный экран отображает интерфейс входа в систему. Для интерфейса входа в систему имеется три типа персонала, а именно:

Оператор: Этот тип персонала работает для тех, кто отвечает за запуск / остановку только SVG.

Менеджер: Этот вид персонала для персонала подходит для технического руководителя, который может настроить и использовать SVG.

Инженер: Этот тип персонала может использоваться только персоналом производителя SVG. Таблица 4-4. Зоны деятельности для различного персонала

Зона	Оператор	Менеджер
Настройка	Не допускается	Разрешено
История	Просмотр разрешен	Просмотр разрешен
Данные в режиме реального времени	Просмотр разрешен	Просмотр разрешен
Управление	Операция разрешена	Операция разрешена
Осциллограф	Операция не разрешена	Операция не разрешена
Выход	Операция разрешена	Операция разрешена
Состояния устройства	Просмотр разрешен	Просмотр разрешен

3. Описание дополнительного интерфейса

1) Кнопки для запуска дополнительного интерфейса

Настройка параметров, запуск данных, запись ошибки, запись работы и осциллограф.

2) Введение в дополнительный интерфейс, появившийся при нажатии кнопки настройки параметров

Рис.4-4 Дополнительный интерфейс – настройка параметров

Каждая группа в дополнительном интерфейсе – это группа, которая должна быть установлена. После нажатия кнопки соответствующей группы выйдет интерфейс настройки соответствующей группы функциональных кодов. Модификация функционального кода тесно связана с запуском SVG. Нажмите кнопку «Выход», чтобы вернуться к основному интерфейсу.

3) Введение в дополнительный интерфейс, появившийся при нажатии кнопки записи данных

Device real	-time data:			Next page	Return
Grid total Q:	0.00MVar	Load total Q:	0.00Mvar	Dev total Q:	0.00MVar
Grid A-phase Q:	0.00MVar	Load A-phase Q:	0.00MVar	Dev A-phase Q:	0.00MVar
Grid B-phase Q:	0.00MVar	Load B-phase Q:	0.00MVar	Dev B-phase Q:	0.00MVar
Grid C-phase Q:	0.00MVar	Load C-phase Q:	0.00MVar	Dev C-phase Q:	0.00MVar
Grid A-phase I:	0. 0 A	Grid AB line U:	0. 00kV	Dev A-phase I:	0. 0A
Grid B-phase I:	0. 0 A	Grid BC line U:	0. 00kV	Dev B-phase I:	0. 0A
Grid C-phase I:	0. 0 A	Grid CA line U:	0. 00kV	Dev C-phase I:	0. 0A
rid A-ph I THD:	0.00%	A-ph total DCV:	OV	Grid work fre:	0.00Hz
rid B-ph I THD:	0.00%	B-ph total DCV:	OV	Grid PF:	0.000
rid C-ph I THD:	0.00%	C-ph total DCV:	OV	Load PF:	0.000

Рис.4-5 Дополнительный интерфейс – запись данных

Как показано на рис. 4-5, первая страница дополнительного интерфейса обеспечивает отображение текущих данных SVG в реальном времени, включая сеть переменного тока, общую нагрузку, полную нагрузку устройства, сетевой ток, напряжение сети, ток устройства, рабочую частоту сети, коэффициент мощности нагрузки и т. д. Нажмите кнопку «Выход», чтобы вернуться к основному интерфейсу.

4) Введение в дополнительный интерфейс, появившийся при нажатии кнопки записи об ошибке

M-ctrller fault 1:	1t 1: 0x0 Grid U: 0.00kV A-phase total DCV:	A-phase total DCV: 0V
M-ctrller fault 1: M-ctrller fault 2:	1t 1: 0x0 Grid U: 0.00kV A-phase total DCV: 1t 2: 0x0 Chain link T: 0.0°C B-phase total DCV:	A-phase total DCV: 0V B-phase total DCV: 0V
M-ctrller fault 1: M-ctrller fault 2: M-ctrller fault 3:	It 1: 0x0 Grid U: 0.00kV A-phase total DCV: 1t 2: 0x0 Chain link T: 0.0°C B-phase total DCV: 1t 3: 0x0 Chain link bus U: 0.0°V C-phase total DCV:	A-phase total DCV: 0V B-phase total DCV: 0V C-phase total DCV: 0V

Рис.4-6 Дополнительный интерфейс – запись ошибки

После нажатия кнопки «запись ошибки» выдается дополнительный интерфейс записи об ошибке. На странице аварийного сигнала сбоя в режиме реального времени отображаются дата сбоя, время сбоя, текущее значение типа ошибки и запись о неисправности. В соответствии с этой записью ошибка DSP устройства, неисправность MCU и ошибка цепи связи также могут предоставлять информацию об ошибке, выходной ток, ток сети, температуру цепи, напряжение шины цепи связи, состояние пользовательского входного терминала, состояние терминала пользователя и информацию в реальном времени устройства. Когда SVG входит в состояние сбоя, пользователи могут проверить причину ошибки в этом интерфейсе, чтобы решить проблему.

5) Введение в дополнительный интерфейс, появившийся при нажатии кнопки записи состояния работы

Рис.4-7 Дополнительный интерфейс – запись состояния работы

Этот интерфейс выдает запись состояния работы SVG. Заданное время периода записи может быть изменено. Пользователи могут загружать запись состояния работы на диск U.

6) Введение в дополнительный интерфейс, появившийся при нажатии кнопки осциллографа

При входе в систему как «Инженер» нажмите кнопку осциллографа, чтобы вывести интерфейс осциллографа, который используется для отображения информации о сигналах в реальном времени важных данных во время работы.

4. Введение в третичный интерфейс

1) Вторичный интерфейс, который может генерировать третичный интерфейс

Дополнительный интерфейс, выведенный с помощью кнопки настройки параметров, может генерировать третичный интерфейс.

2) Введение в третичный интерфейс настройки параметров

Basic Function Group 1:		
Running mode setup: Const reactive mode	QF control mode: Manual ctrl	DC target U sel:
Running command channel:	Constant Q ref val: OMVar	DC U reference value:
3-phase imbal-compen sel: No compensation	Steady AC bus U ref val:	Fan operation selection: Manual oper
Harmonic wave compen sel: No compensation	Const PF ref val:	Chain link redun-num: Bypass not allowed
Run state: Unknow	m state	Next page Return

Рис.4-8 Основная функциональная группа третичного интерфейса

PI adjustment group:		
DCV loop KP1:	ACV loop KI:	Current loop out-amplitude:
DC current loop KI1:	ACV loop out-amplitude:	DCV loop KP2:
DC U loop 1 out-amplitud	le: Current loop KP:	DCV loop KI2:
ACV loop KP:	Current loop KI:	DCV loop 2 out-amplitude:
Run state: Unk	known state	Return

Рис.4-9 Группа параметров настройки параметров PI третичного интерфейса

Третичный интерфейс настройки параметров в основном используется для отображения значения и состояния каждого функционального кода. Пользователи могут щелкнуть соответствующий код функции для установки и изменения кодов функций. Третичный интерфейс настройки параметров включает в себя девять групп функциональных параметров, которые представляют собой базовую группу функций, группу параметров настройки PI, группу входных клемм, группу выходных клемм, группу записей ошибок, группу параметров защиты, группу связи, группу заводских настроек и группу управления пользователями.

Input terminal group 1:		
S1 terminal function sel:	S5 terminal function sel:	Hall cali-coefficient:
S2 terminal function sel:	S6 terminal function sel: No function	Grid PT cali-coefficient:
S3 terminal function sel:	In-terminal polarity set:	PCC measure PT cali-coeffic
S4 terminal function sel: No function	Digital filter times:	Grid CT cali-coefficient:
Run state: Unknow	vn state	Next page Return

Рис.4-10 Группа входных клемм третичного интерфейса

Output terminal group 1	:	
RO1 output selection: No output	RO5 output selection:	A03 output selection: Grid voltage
RO2 output selection:	RO6 output selection:	A04 output selection: Grid voltage
RO3 output selection:	A01 output selection: Grid voltage	
RO4 output selection:	A02 output selection: Grid voltage	
Run state: Unkn	own state	Next page Return

Рис.4-11 Группа выходных клемм третичного интерфейса

3) Интерфейс третичного подменю, выведенного по записи об ошибках

Chain link fa	ault:		Pre page	;	Next page	Return	
Al fault:	0x0	B1 fault:	0x0		C1 fault:	0x0	
A2 fault:	0x0	B2 fault:	0x0		C2 fault:	0x0	
A3 fault:	0x0	B3 fault:	0x0		C3 fault:	0x0	
A4 fault:	0x0	B4 fault:	0x0		C4 fault:	0x0	
A5 fault:	0x0	B5 fault:	0x0		C5 fault:	0x0	
A6 fault:	0x0	B6 fault:	0x0		C6 fault:	0x0	
A7 fault:	0x0	B7 fault:	0x0		C7 fault:	0x0	
A8 fault:	0x0	B8 fault:	0x0		C8 fault:	0x0	
A9 fault:	0x0	B9 fault:	0x0		C9 fault:	0x0	
A10 fault:	0x0	B10 fault:	0x0		C10 fault:	0x0	
All fault:	0x0	B11 fault:	0x0		C11 fault:	0x0	
A12 fault:	0x0	B12 fault:	0x0		C12 fault:	0x0	
A4 fault: A5 fault: A6 fault: A7 fault: A8 fault: A9 fault: A10 fault: A11 fault: A12 fault:	0x0 0x0	B4 fault: B5 fault: B6 fault: B7 fault: B9 fault: B10 fault: B11 fault: B12 fault:	0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0		C4 fault: C5 fault: C6 fault: C7 fault: C9 fault: C10 fault: C11 fault: C12 fault:	0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0	

Рис.4-12 Неисправность цепи АВС третичного интерфейса записи об ошибках

Когда SVG находится в состоянии ошибки, а основной интерфейс отображает текущую неисправность, это ошибка цепи связи, нажмите кнопку записи ошибки в главном интерфейсе, чтобы вывести дополнительный интерфейс аварийного сигнала об ошибке в реальном времени, затем нажмите кнопку ошибки цепи ABC, чтобы войти в третичный интерфейс ошибки цепи ABC, как показано на рис. 4-14. В этом интерфейсе перечислены коды неисправностей 36 звеньев цепи устройства, а затем представлена причина неисправности с помощью группы параметров неисправности кода функции -> последняя, но одна из причин сбоя цепи связи, например, ошибка связи цепи восходящего канала цепи связи, перенапряжение цепи связи, ошибка верхнего моста VCE и т. д.

Обратите внимание, что количество действительной информации о звене цепи связано с фактическим числом звеньев цепи устройства, так как класс напряжения устройства и фактические номера звеньев цепи различны, действительная информация о звене цепи может незначительно отличаться, но это не повлияет на суждение и использование информации о звене цепи.

Нажмите кнопку записи основной информации о главном интерфейсе, чтобы ввести дополнительный интерфейс аварийного сигнала в режиме реального времени, затем нажмите кнопку предыдущей неисправности, чтобы ввести третичный интерфейс предыдущей тревоги. В этом интерфейсе пользователи могут проверять все записи об ошибках, как показано на рисунке. 4-15.

Previous	alarm faults				
Date	Time	Value	Description		
Pı	re page	Next page	e	Refresh	Return

Рис.4-13 Предыдущий аварийный отказ третичного интерфейса записи об ошибке

5. Введение общий интерфейс

Basic Function Group 1:								
Running mode setup: Const reactive mode	Constant reactive mode	l mode: mal ctrl	DC target U sel:					
Running command chanr	Constant grid reactive mode	Q ref val:	DC U reference value:					
Local cmd chl 3-phase imbal-compen	Constant voltage mode	bus U ref val:	OV Fan operation selection:					
No compensation	Voltage reactive comprehensive mode	OKV	Manual oper					
Harmonic wave compen No compensation	Return	ref val: O	Chain link redun-num: Bypass not allowed					
Run state:	Unknown state	=	Next page Return					

Рис.4-14 Схема для общего интерфейса настройки параметров

Для ввода в нумеруемый тип после нажатия появится интерфейс перечисления, как показано выше, щелкните соответствующий элемент для завершения операции настройки.

			QF c	ontro	ol ma	de:		1	DC target U sel:
Const reactive mode	st reactive mode Manual ctrl					Internal value			
Running command channel: Constant Q ref val: DC U reference value:									
Local cmd chl	Float:-1	~1							OV
3-phase imbal-compen		1	1	1	1	1			n operation selection:
No compensation	1	2	3	4	5	•	<-	ок	Manual oper
	6	7	8	9	0	-	CE	Cancel	
Harmonic wave compen					I				ain link redun-num:
								1	

Рис.4-15 Схема интерфейса установки параметров чисел

Для ввода цифрового типа появляется интерфейс установки, и пользователи могут установить значение через мягкую клавиатуру, выведенную снизу, и нажмите кнопку подтверждения, чтобы завершить операцию.

5 Описание параметров функции

5.1 Группа – Базовые параметры

Наименование	Описание	Диапазон настройки	Значение по умолчанию
	0: Режим постоянной реактивной нагрузки		
Настройка режима	1: Режим реактивной нагрузки		
	2: Режим постоянного напряжения	0~1	0
работы	3: Режим постоянной мощности	0~4	0
	4: Режим компенсации реактивного		
	напряжения		

Задание режим работы SVG.

0: Режим постоянной реактивной нагрузки

Этот режим используется для поддержания постоянной реакции устройства. Таким образом, можно измерить точность реактивного процесса, отслеживаемого устройством, и ступенчатую скорость отклика.

1: Режим реактивной нагрузки

В этом режиме устройство обнаруживает ток на стороне нагрузки для автоматической настройки токового выхода, тем самым улучшая качество электрической энергии тока нагрузки.

2: Режим постоянного напряжения

Этот режим используется для управления напряжением системы до определенного уровня. Устройство настраивает реактивный выход, чтобы стабилизировать напряжение системы при значении напряжения, заданном пользователем. Когда напряжение в системе ниже заданного пользователем задания напряжения, устройство выводит емкостные переменные для повышения напряжения в системе; когда напряжение в системе выше этого значения, устройство выводит индуктивный реактивный сигнал, чтобы снизить напряжение в системе.

3: Режим постоянной мощности

Этот режим используется для управления коэффициентом мощности на стороне сети до определенного уровня. Устройство выполняет выход реактивной регулировки в целях стабилизации коэффициента мощности на стороне сети к опорному значению коэффициента мощности, установленного пользователем.

4: Режим компенсации реактивного напряжения

Этот режим объединяет режим постоянного напряжения с реактивным режимом нагрузки. Устройство работает в режиме реактивной нагрузки, когда напряжение сети находится в определенном диапазоне, а если напряжение сети превышает определенный диапазон, устройство работает в режиме постоянного напряжения, чтобы отрегулировать напряжение сети.

Наименование	Описание	Диапазон настройки	Значение по умолчанию
	0: Локальное		
	1: Внешний сетевой порт		
Канал команды запуска	2: MODBUS	0~4	0
	3: Клеммы		
	4: Fieldbus		

Этот функциональный код используется для выбора канала команды управления SVG, а команды управления включают: запуск, останов, сброс ошибок и т. д.

0: Локальное управление

Сенсорный экран и система управления используют связь протокола EthernetUDP и реализуют соответствующие функции: нажатие на кнопку запуска, остановки и сброса ошибки на сенсорном экране и т.д.

1: Внешний сетевой порт

Статический генератор реактивной мощности SVG

Эта функция является дополнительной. В программе компьютерного мониторинга (верхний уровень АСУ ТП) и в системе управления используется связь между протоколом UDP с расширением Ethernet-порта и реализуются соответствующие функции путем нажатия кнопки запуска, остановки и сброса ошибок через программу мониторинга верхнего компьютера.

2: MODBUS

Режим управления по протоколу связи MODBUS.

3: Клеммы

Группа входных клемм определяет входной сигнал как run (пуск), stop (стоп), emergency-stop (безопасный останов), faultreset (сброс ошибки), discharge(разрядка) и externalfaultinput (вход внешней неисправности) для выполнения команд управления.

4: Fieldbus

Команда задания скорости передается по протоколу PROFIBUS.

Наименование	Описание	Диапазон настройки	Значение по умолчанию
Выбор 3-фазной компенсации дисбаланса	0: Нет компенсации 1: Компенсация	0~1	0

Эта функция используется для выбора 3-фазной функции компенсации дисбаланса SVG, и она действительна только тогда, когда базовая функциональная группа-> режим работы устанавливается как режим нагрузки.

0: Нет компенсации

3-фазная компенсация дисбаланса не будет выполняться в режиме реактивной нагрузки. 1: Компенсация

3-фазная компенсация дисбаланса будет выполняться в режиме реактивной нагрузки.

Наименование	Описание	Диапазон настройки	Значение по умолчанию
Выбор компенсации гармоник	0: Нет компенсации	0~1	0
	1: Компенсация		

Этот функциональный код используется для выбора функции компенсации гармоник для SVG, и он действителен только тогда, когда базовая функциональная группа-> режим работы задается как режим нагрузки.

0: Нет компенсации

Отсутствие компенсации гармоник в режиме нагрузки. 1: Компенсация

Компенсация гармоник в режиме нагрузки.

Наименование	Описание	Диапазон настройки	Значение по умолчанию
Режим управления QF	0: Ручное управление 1: Автоматическое управление 2: Включение внешнего управления QF	0~2	0

0: Ручное управление

Размыкатель высокого напряжения QF управляется вручную, нажмите кнопку отключенияQF на сенсорном экране для управления отключение разъединителя QF, нажмите кнопку разъединения QF на сенсорном экране, чтобы отключить разъединитель QF.

1: Автоматическое управление

Высоковольтный разъединитель QF автоматически управляется через устройство. Нажмите кнопку запуска на сенсорном экране в режиме ожидания, и устройство включит высоковольтный разъединитель QF.

2: Включение внешнего управленияQF

Статический генератор реактивной мощности SVG

Во время внешнего контроля QF пользователю разрешается автоматически управлять включением QF, и ошибка включения QF не сообщается. Обратите внимание, что при таких обстоятельствах кнопка включенияQF автоматически скрывается в состоянии ожидания, а во время сна включениеQF осуществляется посредством внешней операции.

Наименование	Описание	Диапазон настройки	Значение по умолчанию
Задание значения постоянной	-100.00~100.00MBap	-100.0~100.0	0.00MBap
реактивной мощности	-100.00~100.00WBap	100.0*100.0	0.00111000

Этот параметр необходимо установить, когда режим работы является постоянным реактивным режимом, и он действителен только в режиме постоянной реакции. Он используется для установки реактивного значения, которое необходимо отправить или поглотить устройством. «+» означает поглощение «var», и само устройство является индуктивным; «-» означает «sendvar», а само устройство является емкостным.

Диапазон настройки задания var -100.00 ~ 100.00МВар, установленное значение не должно превышать номинальную емкость устройства.

Наименование	Описание	Диапазон настройки	Значение по умолчанию
Задание значения			
установившегося напряжения	000.00~500.00 кВ	0~500.00 кВ	10.00 кВ
на шине переменного тока			

Эта настройка действительна в режиме постоянного напряжения, что означает, что SVG необходим для управления целевым значением напряжения шины переменного тока. Это значение представляет собой значение напряжения измерительной точки трансформатора напряжения на стороне сети. При работе в режиме постоянного напряжения, если системное напряжение ниже заданного пользователем задания напряжения, устройство выводит емкостные реактивные сигналы для повышения напряжения в системе; когда напряжение в системе выше этого значения, устройство выводит индуктивный реактивный сигнал для снижения напряжения в системе.

Наименование	Описание	Диапазон настройки	Значение по умолчанию
Задание значения постоянного	-1 000~1 000	-1 000~1 000	1.000
коэффициента мощности	1.000 1.000	1.000 - 1.000	1.000

Эта настройка действительна в режиме постоянной мощности, что означает, что SVG необходим для управления целевым значением коэффициента мощности на стороне сети. Устройство выполняет выход реактивной регулировки в целях стабилизации коэффициента мощности на стороне сети к опорному значению коэффициента мощности, установленному пользователем, в результате чего коэффициента мощности на стороне сети стабилизацию до заданного значения.

Наименование	Описание	Диапазон настройки	Значение по умолчанию
Выбор напряжения постоянного	0: Внутреннее значение	0~1	0
TUKA	г. высор значения		

0: Внутреннее значение

Целевое напряжение постоянного тока означает общее емкостное напряжение постоянного тока на фазу. При выборе внутреннего значения, устройство вычисляет целевое значение автоматически на основе заводских параметров, а основная функция группы-> вариант опорного напряжения постоянного тока установленное значение функции недействительно.

1: Выбор значения

Устройство выбирает базовую функциональную группу-> заданное значение задания напряжения постоянного тока в качестве целевого значения для общего емкостного напряжения постоянного тока на фазу.

Как правило, этот параметр остается по умолчанию.

Описание параметров функции

Наименование	Описание	Диапазон настройки	Значение по умолчанию
Задание значения напряжения постоянного тока	Контрольное значение полного напряжения шины постоянного тока во время работы	0 B~42000 B	9000 B

Когда базовая функциональная группа -> целевое напряжение DC выбрано «1»: выберите установленное значение, этот код функции действителен. Обычно этот параметр остается по умолчанию.

Наименование	Описание	Диапазон настройки	Значение по умолчанию
Выбор режима работы вентиляторов	0: Ручное управление 1: Автоматическое управление	0~1	0

Этот функциональный код используется для управления режимом работы вентилятора.

0: Ручное управление

Когда вентилятор находится в режиме ручного управления, он будет работать после включения выключателя вентилятора шкафа управления.

Вентилятор находится в состоянии автоматического управления устройством, включается переключатель вентилятора шкафа управления, устройство находится в рабочем состоянии, и вентилятор начинает работать. Вентилятор прекратит работу после остановки в течение 30 секунд.

Наименование	Описание	Диапазон настройки	Значение по умолчанию
Количество резервируемых звеньев цепи на фазу	0: Обход (байпас) цепи недоступен 1: Для каждой фазы должно быть не более одного цепного соединения, которое можно обойти	0~1	1

Количество избыточных звеньев цепи, разрешенных на фазу.

0: Обход (байпас) цепи недоступен

Когда связанная ошибка произошла с цепной связью, система останавливается и не может переключиться в обходное (байпасное) состояние

1: Для каждой фазы должно быть не более одного цепного соединения, которое можно обойти

Если на фазу имеется не более одной цепи повреждения, пользователи могут выполнять операцию байпаса с помощью ручной или автоматической настройки байпаса. Максимальное установленное значение этого функционального кода равно 1, а именно: система поддерживает режим работы N-1.

Наименование	Описание	Диапазон настройки	Значение по
			умолчанию
	0: Внутренний байпас		
Выбор режима байпаса А-фазы	1: Внешний байпас	0~1	0

Выбор режима байпаса А-фазы

0: Внутренний байпас

Используется HbridgelGBT, чтобы реализовать функцию байпаса цепи, когда условие функции цепной связи разрешено.

1: Внешний байпас

Используется внешнее короткое замыкание сборной шины для реализации функции байпаса цепи, когда цепь не выполняет внутренние условия байпаса.

Примечание. Настройка режима байпаса повлияет на оценку состояния цепи связи системой, необходимо убедиться, что надежное внешнее байпасное соединение было принято до установки режима байпаса на «внешний байпас». Обратите внимание, что неправильная настройка может привести к непредсказуемой ошибке или поломке оборудования.

Наименование	Описание	Диапазон настройки	Значение по умолчанию
	bit0: Цепь связи 1 выбор байпаса (0: Цепная связь не обходится, 1: байпас цепи отсутствует)		
Выбор байпаса А-фазы	 bit11: Цепь 12 выбор байпаса (0: Цепная связь не обходится; 1: байпас цепи)	0x000~0xFFF	0x000

Выбор байпаса А-фазы, состояние байпаса цепи

Этот код функции принимает шестнадцатеричные числа для индикации. Он используется для выбора байпаса цепи связи, бит с низким битом и высоким уровнем представляет собой состояние байпаса цепной линии 1 в цепочку 12 в последовательности.

0: Соответствующее звено цепи работает нормально

1: Соответствующее звено цепи работает в режиме байпас

Примечание: выбор байпаса звена цепи должен соответствовать звену цепи повреждения, как показано ниже. Звено цепи А1 до А12 соответствует бит0 бит 11 в соответствующем коде функции. Обратите внимание, что неправильная настройка может привести к непредсказуемой ошибке.

Пример установки: код функции байпаса принимает шестнадцатиричный режим входного сигнала, таблица установки показан ниже.

Байпас звена цепи	A12	A11	A10	A9	A8	A7
Установка кода функции	0x800	0x400	0x200	0x100	0x80	0x40
Байпас звена цепи	A6	A5	A4	A3	A2	A1
Установка кода функции	0x20	0x10	0x8	0x4	0x2	0x1

Наименование	Описание	Диапазон настройки	Значение по умолчанию
Выбор режима байпаса В-фазы	0: Внутренний байпас 1: Внешний байпас	0~1	0

На тройка режима байпаса В-фазы аналогична режиму байпаса А-фазы

Наименование	Описание	Диапазон настройки	Значение по умолчанию
Выбор байпаса В-фазы	bit0:Цепь связи 1 выбор байпаса (0: Цепная связь не обходится, 1: байпас цепи отсутствует)	0x000~0xFFF	0x000
	bit11: Цепь 12 выбор байпаса (0: Цепная связь не обходится; 1: байпас цепи)		

Настройка выбора байпаса В-фазы аналогична выбору байпаса А-фазы

Наименование	Описание	Диапазон настройки	Значение по умолчанию
	0: Внутренний байпас	0.1	0
высор режима сайпаса в-фазы	1: Внешний байпас	0~1	0

Настройка выбора байпаса С-фазы аналогична выбору байпаса А-фазы

Наименование	Описание	Диапазон настройки	Значение по умолчанию
	bit0:Цепь связи 1 выбор байпаса (0: Цепная связь не обходится, 1: байпас цепи отсутствует)		
Выбор байпаса С-фазы	bit11: Цепь 12 выбор байпаса (0: Цепная связь не обходится; 1: байпас цепи)	0x000~0xFFF	0x000

Настройка выбора байпаса С-фазы аналогична выбору байпаса А-фазы

Наименование	Описание	Диапазон настройки	Значение по умолчанию
Восстановление параметров функции	0: Нет операции 1: Восстановить значения по умолчанию	0~1	0

Примечание: После выполнения функции восстановления, значение этого функционального кода автоматически восстанавливается до 0; восстановить значение по умолчанию не восстановит параметры в заводской группе параметров, не восстановит коэффициент трансформации и значение дрейфа нуля.

Наименование	Описание	Диапазон настройки	Значение по умолчанию
Верхний предел контроля напряжения	000.00~327.67 кВ	000.00~327.67 кВ	11.00
Нижний предел контроля напряжения	000.00~327.67 кВ	000.00~327.67 кВ	9.00
Верхний предел гистерезиса управления напряжением	000.00~327.67 кВ	000.00~327.67 кВ	10.50
Нижний предел гистерезиса управления напряжением	000.00~327.67 кВ	000.00~327.67 кВ	9.50

Эта настройка действительна в режиме полного напряжения, что означает, что SVG необходим для управления целевым диапазоном напряжения шины переменного тока. Когда напряжение сети находится между верхним пределом и нижним пределом напряжения, устройство работает в режиме реактивной нагрузки; когда сетевое напряжение превышает верхний предел или нижний предел диапазона управления напряжением, устройство работает в режиме постоянного напряжения, чтобы отрегулировать напряжение сети.

5.2 Настройка параметров группы PI

Примечание: Группа параметров настройки PI устанавливается правильно во время ввода в эксплуатацию, не изменяйте настройку по желанию, иначе может возникнуть непредсказуемая неисправность. Эта группа параметров не восстанавливается.

Система управления устройства использует три группы замкнутого контура: один для поддержания постоянного напряжения на конденсаторах стабильным, необходимо контролировать напряжение постоянного тока на конденсатор с опорным значением напряжения; другой - быстро отслеживать ток, необходимо контролировать фактический выходной ток устройства на рассчитанный опорный ток; последний из них - поддерживает постоянное напряжение сети в режиме постоянного напряжения. Эти три вида управления используют типичное управление с замкнутым контуром PI. P - пропорциональная составляющая, которая может быстро реагировать на ошибки, чтобы уменьшить ошибки; Интегральная составляющая, которая может устранить статическую ошибку. Пользователям необходимо установить три группы параметров PI с диапазоном настройки от 0,00 до 600,00. Компонент PI, контролируемый каждой группой, снабжен одним предельным параметром PI, который используется для предотвращения насыщения выходного сигнала PI.

Статический генератор реактивной мощности SVG

Наименование	Описание	Диапазон настройки	Значение по умолчанию
Пропорциональное усиление регулировки напряжения постоянного тока	0.00~600.00	0.00~600.00	1.21
Интегральное усиление регулировки напряжения постоянного тока	0.00~600.00	0.00~600.00	7.31
Предел выходного напряжения постоянного тока	0.00~100.00%	0.00~100.00%	100.00%

Регулятор напряжения постоянного тока показан на Рис. 5-1.

Рис. 5-1 Блок-схема регулятора напряжения постоянного тока

Наименование	Описание	Диапазон настройки	Значение по умолчанию
Усиление регулировки напряжения шины переменного тока	0.00~600.00	0.00~600.00	0.14
Интегральное усиление напряжения шины переменного тока	0.00~600.00	0.00~600.00	1.00
Предел выхода регулировки напряжения тока шины переменного тока	0.00~100.00%	0.00~100.00%	100.00%

Регулятор напряжения шины переменного тока показан на Рис. 5-2.

Рис.5-2 Блок-схема регулятора напряжения переменного тока

Наименование	Описание	Диапазон настройки	Значение по умолчанию
Регулируемый пропорциональное усиление тока	0.00~600.00	0.00~600.00	67.57
Регулируемый интегральный коэффициент усиления тока	0.00~600.00	0.00~600.00	10.29
Регулируемый предел выходного тока	0.00~100.00%	0.00~100.00%	100.00%

Регулируемый регулятор тока показан на Рис. 5-3.

Рис.5-3 Блок-схема регулируемого регулятора тока

5.3 Группа входных клемм

Наименование	Описание	Диапазон настройки	Значение по умолчанию
Функция клеммы S1	0~10	0~10	0
Функция клеммыS2	0~10	0~10	0
Функция клеммыS3	0~10	0~10	0
Функция клеммыS4	0~10	0~10	0
Функция клеммыS5	0~10	0~10	0
Функция клеммыS6	0~10	0~10	0

Этот параметр используется для установки соответствующей функции цифровых многофункциональных входных клемм. Если команда клеммы выбрана основной функциональной группой->канал выполнения команды, функция показана ниже:

0: Нет функции:

1: Управление запуском (импульс): внешняя управляемая функция; когда SVG находится в состоянии готовности, устройство управления начинает работать.

2: Аварийная остановка: внешняя функция аварийного останова, используемая для дистанционного аварийного останова, работает в локальном / дистанционном состоянии и всех командных каналах.

3: Сброс неисправности (импульс): функция сброса внешней неисправности, используется для дистанционного сброса ошибок.

4: Входной сигнал «Внешняя неисправность»: в основном используется для приема внешних сбоев, если внешние сообщения вводятся с ошибкой, устройство сообщает о внешней ошибке и останавливается.

5: Управление Стоп (импульс): функция внешнего останова, когда SVG находится в рабочем состоянии, устройство перестает работать.

6: Управление включением QF / KM2 (импульс): когда устройство настроено на использование контактораKM2, клемма управляет включением контактора KM2, в противном случае он управляет включением контактора QF.

7: Управление отключением QF / KM2 (импульс): когда устройство настроено на использование контактора KM2, клемма управляет отключением контактора KM2, в противном случае он управляет отключением контактора QF. 8~10: Резерв

Наименование	Описание	Диапазон настройки	Значение по умолчанию
Настройка полярности входных клемм	0x0~0x3F	0x0~0x3F	0

Установите полярность цифрового входа, и каждая клемма соответствует одному биту, соответствующий бит: 0 - NO-контакт; 1 - контакт NC.

Наименование	Описание	Диапазон настройки	Значение по умолчанию
Время цифрового фильтра	1~10	1~10	5

Установите время фильтрации для выборки клемм S1-S6. В тех случаях, когда помехи сильные, увеличьте этот параметр, чтобы избежать неправильной работы.

Статический генератор реактивной мощности SVG

Описание параметров функции

Группа входных терминалов содержит коэффициент преобразования A / D и функцию калибровки дрейфа нуля. При нормальной ситуации калибровка нулевого дрейфа преобразования была сделана перед отправкой, и пользователям не нужно ее менять, однако, если пользователи восстанавливали параметры по умолчанию или раньше заменяли плату сбора данных или основную плату управления, это необходимо снова откалибровать коэффициент преобразования и функцию дрейфа нуля.

Перед аналоговым сигналом, входящим в контроллер устройства, он должен пройти два уровня трансформации, а именно коэффициент трансформации и коэффициент преобразования AD. Аналоговый сигнал сначала передает потенциальный трансформатор, трансформатор тока и компонент Холла для преобразования в сигнал измерения малого напряжения, коэффициент преобразования этого трансформатора (датчика) представляет собой коэффициент преобразования, который устанавливается в заводской группе параметров изготовителем на основе фактического трансформатора (сенсор)ль. Коэффициент трансформации оборудования, который может быть установлен изготовителем, включает в себя коэффициент трансформации трансформатора напряжения, трансформатора тока и устройства. Если необходимо внести изменения в коэффициент трансформации этого уровня, то необходимо связаться с производителем.

Перед сигналом малого напряжения, который подвергся инженерному преобразованию, входящему в А / Dвыборку, необходимо пройти пропорциональное преобразование и формирование сигнала, коэффициент трансформации этого уровня внутри контроллера называется коэффициентом трансформации А / D. Устройство обеспечивает 12 AD-каналов, а коэффициент преобразования A / D, определенный этим устройством, означает соотношение между значением входного сигнала малого сигнала и аналоговым значением штыря AD. Нулевой дрейф означает амплитуду, когда вход канала равен нулю, а выходной сигнал выборки не равен нулю. Этот контроллер обеспечивает режим калибровки для коэффициента трансформации и дрейфа нуля. Коэффициент трансформации и дрейф нуля должны быть откалиброваны перед отправкой. Последовательность калибровки сначала должен быть откалиброван нулевой дрейф, затем установлен и откалиброван коэффициент трансформации.

Наименование	Описание	Диапазон	Значение по
		настройки	умолчанию
Коэффициент трансформации А/D0	0~65.535	0~65.535	1.077
Дрейф нуля A/D0	-32767~32767	-32767~32767	0
Коэффициент трансформации A/D1	0~65.535	0~65.535	1.077
Дрейф нуляА/D1	-32767~32767	-32767~32767	0
Коэффициент трансформации A/D2	0~65.535	0~65.535	1.077
Дрейф нуляА/D2	-32767~32767	-32767~32767	0
Коэффициент трансформации A/D3	0~65.535	0~65.535	10.539
Дрейф нуляА/D3	-32767~32767	-32767~32767	0
Коэффициент трансформации A/D4	0~65.535	0~65.535	10.539
Дрейф нуляА/D4	-32767~32767	-32767~32767	0
Коэффициент трансформации A/D5	0~65.535	0~65.535	10.539
Дрейф нуляА/D5	-32767~32767	-32767~32767	0
Коэффициент трансформации A/D6	0~65.535	0~65.535	21.240
Дрейф нуляА/D6	-32767~32767	-32767~32767	0
Коэффициент трансформации A/D7	0~65.535	0~65.535	21.240
Дрейф нуляА/D7	-32767~32767	-32767~32767	0
Коэффициент трансформации A/D8	0~65.535	0~65.535	1.077
Дрейф нуляА/D8	-32767~32767	-32767~32767	0
Коэффициент трансформации A/D9	0~65.535	0~65.535	1.077
Дрейф нуляА/D9	-32767~32767	-32767~32767	0
Коэффициент трансформации A/D10	0~65.535	0~65.535	21.24
Дрейф нуляА/D10	-32767~32767	-32767~32767	0
Коэффициент трансформации A/D11	0~65.535	0~65.535	21.24
Дрейф нуляА/D11	-32767~32767	-32767~32767	0
Канал	Электрический сигнал	Канал	Электрический сигнал
-------	-----------------------------	-------	--------------------------------------
			Линейное напряжение СВ точки доступа
ADO		ADO	PT
AD1	Ток В-фазы точка доступа СТ	AD7	Линейное напряжение АВ точки доступа
AD2	Ток С-фазы точка доступа СТ	AD8	Ток фазы А шины верхнего уровня
AD3	Ток А-фазы прибора SVG	AD9	Ток фазы С шины верхнего уровня
	Tor C theory protocol SVC		Линейное напряжение АВ шины верхнего
AD4	Ток С-фазы приоора SVG	ADTU	уровня
	Tor P dogu sputtere SVC		Линейное напряжение СВ шины
AD5	ток в-фазы приоора 506	ADTI	верхнего уровня

Примечание. Шина составляет собой шину верхнего уровня точки доступа РТ, например, когда точка доступа РТ – это шина 35 кВ, а 35 кВ преобразуется от 110 кВ трансформатором, тогда шина верхнего уровня означает шину 110 кВ. Шина верхнего уровня обычно используется в тех случаях, когда требования к дисплею и управлению налагаются на шину повышенной мощности, и нормальным промышленным пользователям не требуется доступ к этому сигналу.

Ниже приведен принцип калибровки коэффициента трансформации и дрейфа нуля:

Шаг 1: После подачи управляющей мощности на устройство введите команду настройки параметров-> группа входных клемм нажмите кнопку настройки дрейфа нуля и введите интерфейс настройки нулевого дрейфа.

Шаг 2: Если все входные данные канала могут быть равны 0, нажмите «рассчитать нулевое значение дрейфа» напрямую, затем в поле вычисления нуля будет выведено новое значение, нажмите кнопку «сохранить ноль дрейфа», обратите внимание, что нажмите эту кнопку сохранить все текущие расчетные значения каналов, а исходные фактические значения будут заменены, как показано на рисунке. 5-4;если только один или несколько входных сигналов канала могут быть равны 0 или нужно изменить только несколько значений канала, нажмите кнопку «рассчитать нулевое значение дрейфа», а значение нулевого дрейфа текущего канала будет отображаться в поле вычисления, а затем нажмите фактическое значение поля соответствующего канала для изменения и подтверждения, измененное значение представляет собой значение вычисления0 соответствующего входного канала.

Шаг 3: После калибровки нулевого дрейфа нажмите «Настройка трансформации», чтобы вывести на экран соответствующий интерфейс. Если при отображении значения текущего напряжения возникла большая ошибка, необходимо выполнить калибровку коэффициента трансформации А / D.

Принцип калибровки коэффициента трансформации показан ниже:

Если предшествующим преобразованием определенного канала является KENG, коэффициент преобразования A/ D равен KAD, дрейф нуля – это ADZERO, значение выборки AD - ADSAM, тогда значение канала y = ([ADSAM] -[ADZERO]) * K1 * KAD, в котором K1 является константой, связанной с чипом выборки AD. Если задано контрольное значение калибровки y_ref, то KAD можно откалибровать. Система может автоматически вычислить коэффициент трансформации. Во-первых, вход опорного сигнала во входном сигнале канала, нуждающегося в калибровке, нажмите опорное значение канала, чье преобразование должно быть откалибровано, входной аналоговый опорный сигнал, известный в настоящее время (например, 1000 B), затем нажмите кнопку

«сохранить коэффициент трансформации», а расчетное значение коэффициента преобразования будет рассчитываться по соответствующему каналу, нажмите кнопку «сохранить значение коэффициента трансформации», чтобы сохранить коэффициент преобразования канала, введенного с эталонным значением калибровки, или пользователи могут вводить значение вычисления в соответствующий блок преобразования, затем сохраните и подтвердите.

Формула расчета фактического значения соответствует двухуровневому коэффициенту трансформации:

Value = ([ADSAM] - [ADZERO]) * K1 * KAD * KENG.

Примечание. Значения параметров по умолчанию установлены правильно, не изменяйте их по желанию, иначе может возникнуть непредсказуемая ошибка. Параметры коэффициента трансформации и дрейфа нуля не могут быть восстановлены как значения по умолчанию.

5.4 Группа выходных клемм

Наименование	Описание	Диапазон настройки	Значение по умолчанию
Функция выхода RO1	0~15	0~15	0
Функция выхода RO2	0~15	0~15	0
Функция выхода RO3	0~15	0~15	0
Функция выхода RO4	0~15	0~15	0
Функция выхода RO5	0~15	0~15	0
Функция выхода RO6	0~15	0~15	0

Этот параметр используется для установки соответствующих функций релейных выходовRO1-RO6

0: Нет выхода:

1: Готов к запуску: Сигнал на выходе, когда SVG готов к запуску.

2: Работа: Сигнал на выходе, когда SVG находится в рабочем состоянии.

3: Ошибка: Сигнал на выходе, когда SVG находится в состоянии ошибки.

4 : Авария: Сигнал на выходе, когда SVG находится в состоянии аварии.

5: Блокировка устройства: сигнал на выходе, когда SVG находится в состоянии блокировки.

6: Дистанционное / локальное состояние: сигнал на выходе, когда SVG находится в режиме локального управления.

7: Состояние «Сон»: Сигнал на выходе, когда SVG находится в состоянии сна.

8~15: Резервные функции.

Примечание: Сигнал ON означает, что замыкающий контакт реле замыкается, и контакт NC размыкается.

Наименование	Описание	Диапазон настройки	Значение по умолчанию
Функция выхода АО1	0~4	0~4	0
Функция выхода АО2	0~4	0~4	0
Функция выхода АОЗ	0~4	0~4	0
Функция выхода АО4	0~4	0~4	0

Этот параметр используется для установки соответствующих функций аналоговых выходовАО1-АО4.

0: Напряжение сети: 100% соответствует 1,5-кратному номинальному напряжению SVG

1: Устройство: 100% соответствует 1,5 -кратной номинальной мощности SVG

2: Ток устройства А-фаза: 100% соответствует 1,5-кратному номинальному току SVG

3: Ток устройства В-фаза: 100% соответствует 1,5-кратному номинальному току SVG

4: Ток устройства С-фаза: 100% соответствует 1,5-кратному номинальному току SVG

Наименование	Описание	Диапазон настройки	Значение по умолчанию
Нижний предел выхода АО1	0.00%~100.00%	0.00~100.00	0.00%
Соответствующий нижнему пределу выход АО1	4mA~20mA	4~20	4mA
Верхний предел выхода АО1	0.00%~100.00%	0.00~100.00	100.0%
Соответствующий верхнему пределу выход АО1	4mA~20mA	4~20	20mA
Нижний предел выхода АО2	0.00%~100.00%	0.00~100.00	0.00%
Соответствующий нижнему пределу выход АО2	4mA~20mA	4~20	4mA

Описание параметров функции

Наименование	Описание	Диапазон настройки	Значение по умолчанию
Верхний предел выхода АО2	0.00%~100.00%	0.00~100.00	100.0%
Соответствующий верхнему пределу выход АО2	4mA~20mA	4~20	20mA
Нижний предел выхода АОЗ	0.00%~100.00%	0.00~100.00	0.00%
Соответствующий нижнему пределу выход АОЗ	4mA~20mA	4~20	4mA
Верхний предел выхода АОЗ	0.00%~100.00%	0.00~100.00	100.0%
Соответствующий верхнему пределу выход АОЗ	4mA~20mA	4~20	20mA
Нижний предел выхода АО4	0.00%~100.00%	0.00~100.00	0.00%
Соответствующий нижнему пределу выход АО4	4mA~20mA	4~20	4mA
Верхний предел выхода АО4	0.00%~100.00%	0.00~100.00	100.0%
Соответствующий верхнему пределу выход АО4	4mA~20mA	4~20	20mA

Аналоговый выход показан ниже. АО1, АО2, АО3 и АО4 - токовые выходы.

Рис.5-4Связь между предустановленным значением и аналоговым выходом

5.5 Группа записи ошибок

Цаимонорание	Описание	Диапазон	Значение по
паименование	Описание	настройки	умолчанию
	Ошибки DSP, каждый бит представляет различные	Всего 16 бит	
	типы ошибок:	Когда 16 бит -	
	00: Нет ошибки (16 бит - все 0)	все 0, это	
Тип 1-й ошибки	01: Аварийный сигнал по току устройства	означает, что	
	02:Программное обеспечение:сверхток	нет ошибки	
	03:Аппаратное обеспечение:сверхток		
	04: Ошибка по перенапряжению сети	01 16	
	05: Ошибка по пониженному напряжению сети		
	06: Общее перенапряжение постоянного тока		
	07: Общее пониженное напряжение постоянного		
	тока		
	08: Дисбаланс сети		
	09: Дисбаланс постоянного тока		
	10: Ошибкипри потери фазы		
	11: Ошибка DSP и MCU		
	12: Неисправность при начальном обнаружении		
	устройства		
	13: Резерв		
	14: Неисправность при начальном обнаружениисети		
	15: Резерв		
	16: Перегрузка по току устройства		

Ошибка неисправности главного контроллераDSP; указана в виде бит; каждый бит представляет собой различные типы неисправностей, как показано выше.

Наименование	Описание	Диапазон настройки	Значение по умолчанию
Тип 2-й ошибки	Ошибки МСU, каждый бит представляет различные типы ошибок: 00: Нетошибк (16 бит - все 0) 01: Внешняя ошибка 02: Ошибка доступа к двери 03: Ошибка работы вентилятора 04: Сигнализация резервного питания 05: Аварийная сигнализация UPS 06: Сигнал перегрева реактора 07: Неисправность датчика температуры реактора 08: Ошибка модуля связи MODBUS 09: Ферроэлектрическая ошибка 10: Ошибка квинтирования MCU и DSP 11: Аварийный сигнал основной мощности 12: безопасный останов 13: Время автоматического сброса слишком большое 14: Превышение заводского времени 15: Ошибка основного управления 16: Перегрев реактора	Всего 16 бит Когда 16 бит - все 0, это означает, что нет ошибки 01 16 представляет 1-й-16-й бит	

Ошибка не исправности главного контроллера MCU; указана в виде бит; каждый бит представляет собой различные типы неисправностей, как показано выше.

	0	Диапазон	Значение по
паименование	Описание	настроики	умолчанию
	00: Нет ошибки (16 бит - все	Всего 16 бит Когда	
	0) 01: Ошибка при зарядке	16 бит - все 0, это	
	02: Ошибка при включении QF	означает, что нет	
Тип 3-й ошибки	03: Ошибка при выключении QF	ошибки	
	04: Ошибка при включении КМ1		
	05: Ошибка при выключении KM1	01 16	
	06: Ошибка обратной связи		
	заземляющего разъединителя	представляет т-и-	
	07: Ошибка резервирования байпаса	То-и ойт	
	08: Ошибка модуля связи PROFIBUS		
	09: Ошибка параллельного		
	режима		
	10: Ошибка связи с параллельной сетью		
	Ethernet		
	11: Ошибка параллельного управления		
	/ хоста 12: Ошибка при включенииКМ2		
	13: Ошибка при выключенииКМ2		

Ошибка неисправности главного контроллера MCU; указана в виде бит; каждый бит представляет собой различные типы неисправностей, как показано выше.

		Диапазон	Значение по
Наименование	Описание	настройки	умолчанию
Последняя, но одна	Ошибка цепи связи. каждый бит представляет	1 Всего 16 бит	
ошибка цепи связи	различные типы ошибок:	Когда 16 бит -	
	00: Нет ошибки (16 бит - все 0)	все 0, это	
	01: Ошибка восходящей оптоволоконной линии связи	означает, что нет ошибки	

		Диапазон	Значение по
Наименование	Описание	настройки	умолчанию
	02: Ошибка нисходящей оптоволоконной линии		
	связи	01 16	
	03: Нет готовности звена цепи	представляет	
	04: Перенапряжение звена цепи	1-й-16-й бит	
	05: Пониженное напряжение звена цепи		
	06: Сбой питания звена цепи		
	07: Перегрев звена цепи		
	08: Отказ байпаса звена цепи		
	09: Защита от потери мощности цепи		
	10: Верхний мост VCE		
	11: Нижний мост VCE		
	12: Аппаратное обеспечение: перенапряжение		
	13: Звено цепи не совпадает		

Ошибка неисправности звена цепи; указана в виде бит; каждый бит представляет собой различные типы неисправностей, как показано выше.

Описание	настройки	умолчанию
сли номер ошибки звена цепи равен 0, это означает тсутствие ошибки звена цепи; сли это не 0		
огда 12 звеньев цепи в каждой фазе: .1~A12: 1~12 .1~B12: 13~24 .1~C12: 25~36 огда 8 звеньев цепи в каждой фазе: .1~A8: 1~8 .1~B8: 13~20		
	ли номер ошибки звена цепи равен 0, это означает сутствие ошибки звена цепи; ли это не 0 гда 12 звеньев цепи в каждой фазе: ~A12: 1~12 ~B12: 13~24 ~C12: 25~36 гда 8 звеньев цепи в каждой фазе: ~A8: 1~8 ~B8: 13~20 ~C8: 25~32	Настройки ли номер ошибки звена цепи равен 0, это означает сутствие ошибки звена цепи; ли это не 0 гда 12 звеньев цепи в каждой фазе: ~А12: 1~12 ~B12: 13~24 ~C12: 25~36 гда 8 звеньев цепи в каждой фазе: ~A8: 1~8 ~B8: 13~20 ~C8: 25~32

На дисплее отображается последняя ошибка звена цепи; если число ошибок звеньев цепи равно 0, то это означает что ошибок нет, если номер ошибки звена цепи не равен 0, то 1-12 представляет собой ошибку звена цепи A1-A12 соответственно, 13-24 представляет собой ошибку звена цепи B1-B12 соответственно, а 25-36 представляет собой ошибку звена цепи К1-C12 соответственно.

Наименование	Описание	Диапазон настройки	Значение по умолчанию
Выходной ток при последней ошибке	Выходной ток А-фазы при ошибке		

Отображение на дисплее устройства выходного токаА-фазы во время последней ошибки.

Наименование	Описание	Диапазон настройки	Значение по умолчанию
Напряжение сети при последней	Линейное напряжение сети АВ при		
ошибке	ошибке		

Отображение на дисплее устройства линейного напряжения сетиАВ во время последней ошибки.

		Диапазон	Значение по
Наименование	Описание	настройки	умолчанию
Напряжение шины цепи при	Напряжение шины цепи при		
последней ошибке	ошибке		

Отображает напряжение на шине в течение последней ошибки, когда цепь не повреждена, опорное значение напряжение звена цепи шины A1; когда звено цепи неисправно, выводится выходное напряжение на шине неисправной цепи.

Наименование	Описание	Диапазон настройки	Значение по умолчанию
Температура цепи при последней			
ошибке	температура цепи при ошиоке		

Отображение температуры звена цепи во время последней ошибке, когда цепь не повреждена, температура звена цепи А1 является контрольным значением; когда звено цепи неисправно, выводится температура неисправной цепи.

Наименование	Описание			Диапазон настройки	Значение по умолчанию	
Состояние входных клемм при последней ошибке	Состояние ошибке	входных	клем	при		

Состояние входных клемм при последней ошибке – это десятичное число, когда входная клемма включена, ее соответствующий бит равен 1, когда она выключена, то он равен 0. Пользователи могут знать состояние цифрового входного сигнала во время ошибки через это значение. Отображение состояния всех цифровых входных клемм во время последней ошибки:

BIT15	BIT14	BIT13	BIT12	BIT11	BIT10	BIT9	BIT8
Резерв							
BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BITO
Резерв	Резерв	S6	S5	S4	S3	S2	S1

Отображение состояния входных клемм пользователя во время последней ошибке согласно таблице выше.

Наименование	Описание	Диапазон настройки	Значение по умолчанию
Состояние выходных клемм при	Состояние выходных клемм при		
последней ошибке	ошибке		

Состояние выходных клемм при последней ошибке – это десятичное число, когда выходная клемма включена, ее соответствующий бит равен 1, когда она выключена, то он равен 0. Пользователи могут знать состояние цифрового выходного сигнала во время ошибки через это значение. Отображение состояния всех цифровых выходных клемм во время последней ошибки:

BIT15	BIT14	BIT13	BIT12	BIT11	BIT10	BIT9	BIT8
Резерв							
BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
Резерв	Резерв	RO6	RO5	RO4	RO3	RO2	RO1

Отображение состояния выходных клемм пользователя во время последней ошибке согласно таблице выше.

		Диапазон	Значение по
Наименование	Описание	настройки	умолчанию
Напряжение шины постоянного тока	Напряжение шины постоянного тока		
А-фазы, при последней ошибке	А-фазы, при ошибке		
Напряжение шины постоянного тока	Напряжение шины постоянного тока		
В-фазы, при последней ошибке	В-фазы, при ошибке		
Напряжение шины постоянного тока	Напряжение шины постоянного тока		
С-фазы, при последней ошибке	С-фазы, при ошибке		

Отображение 3-фазного напряжения конденсатора шины постоянного тока во время последней ошибке.

Наименование	Описание	Диапазон настройки	Значение по умолчанию
Тип 1 последней ошибки главного контроллера	То же самое с описанием последней ошибки		
Тип 2 последней ошибки главного контроллера	То же самое с описанием последней ошибки		

Наименование	Диапазон настройки	Значение по умолчанию	
Тип 3 последней ошибки главного контроппера	То же самое с описанием последней ошибки		
Последняя ошибка звена цепи	То же самое с описанием последней ошибки		
Номер звена цепи при последней ошибке	То же самое с описанием последней ошибки		
Выходной ток при последней ошибке	То же самое с описанием последней ошибки		
Напряжение сети при последней ошибке	То же самое с описанием последней ошибки		
Напряжение звена цепи связи при последней ошибке	То же самое с описанием последней ошибки		
Температура цепи при последней ошибке	То же самое с описанием последней ошибки		
Состояние входных клемм пользователя при последней ошибке	То же самое с описанием последней ошибки		
Состояние выходных клемм пользователя при последней ошибке	То же самое с описанием последней ошибки		
Напряжение шины постоянного тока А- фазы, при последней ошибке	То же самое с описанием последней ошибки		
Напряжение шины постоянного тока В- фазы, при последней ошибке	То же самое с описанием последней ошибки		
Напряжение шины постоянного тока С- фазы, при последней ошибке	То же самое с описанием последней ошибки		
Тип 1 текущей ошибки главного контроллера	То же самое с описанием последней ошибки		
Тип 2 текущей ошибки главного контроллера	То же самое с описанием последней ошибки		
Тип 3 текущей ошибки главного контроллера	То же самое с описанием последней ошибки		
Текущая ошибка звена цепи	То же самое с описанием последней ошибки		
Номер звена цепи при текущей ошибке	То же самое с описанием последней ошибки		
Выходной ток притекущей ошибке	То же самое с описанием последней ошибки		
Напряжение сети при текущей ошибке	То же самое с описанием последней ошибки		
Напряжение звена цепи связи при текущей ошибке	То же самое с описанием последней ошибки		
Температура цепи при текущей ошибке	То же самое с описанием последней ошибки		
Состояние входных клемм пользователя при текущей ошибке	То же самое с описанием последней ошибки		
Состояние выходных клемм пользователя при текущей ошибке	То же самое с описанием последней ошибки		
Напряжение шины постоянного тока А- фазы, при текущей ошибке	То же самое с описанием последней ошибки		
Напряжение шины постоянного тока В- фазы, при текущей ошибке	То же самое с описанием последней ошибки		
Напряжение шины постоянного тока С- фазы, при текущей ошибке	То же самое с описанием последней ошибки		

5.6 Группа – параметры защит

Обеспечьте нормальную работу устройства, установив коды функций в группах параметров защиты. Эта группа функциональных кодов показана ниже:

Наименование	Описание	Диапазон настройки	Значение по умолчанию	
Допустимая пороговая величина сигнала	20.0% 120.0%	20.0 120.0	100%	
тревоги устройства	20.0%~130.0%	20.0~130.0	100%	

Установите текущее пороговое значение тревоги устройства. Когда это пороговое значение будет превышено, будет отправлен сигнал тревоги устройства, а сенсорный экран отобразит подсказку.

Наименование	Описание	Диапазон настройки	Значение по умолчанию
Время непрерывной сигнализации	0, 1805	0, 180c	605
устройства	0~1005	0~1005	005

Установите постоянное время сигнала тревоги устройства. Когда тревога по току устройства превышает установленное время, будет сообщено о неисправности перегрузки по току устройства.

Наименование	Описание	Диапазон настройки	Значение по умолчанию
Общая защита от перенапряжения DC	20.0%~150.0%	20.0~150.0	120%

Установите защиту по перенапряжению DC устройства, если оно превышено, будет сообщение об ошибке полного перенапряжения DC устройства.

Наименование	Описание	Диапазон настройки	Значение по умолчанию
Общая защита от пониженного напряжения DC	20.0%~120.0%	20.0~120.0	80.0%

Установите защиту от пониженного напряжения DC устройства, если это значение превышено, будет сообщение об ошибке минимального напряжения DCустройства.

Наименование	Описание	Диапазон настройки	Значение по умолчанию
Защита от дисбаланса DC	0.0%~150.0%	0.0~150.0	4.0%

Установите защиту от дисбаланса DC устройства, если это значение превышено, будет сообщение об ошибке дисбаланс DC.

Наименование	Описание	Диапазон настройки	Значение по умолчанию
Защита от перенапряжения сети	20.0%~150.0%	20.0~150.0	120.0%

Установите защиту от перенапряжения сети, если это значение превышено, будет сообщено сообщение об ошибке перенапряжение сети.

Наименование	Описание	Диапазон настройки	Значение по умолчанию
Защита от пониженного напряжения сети	20.0%~150.0%	20.0~150.0	40.0%

Установите защиту от пониженного напряжения сети, если это значение превышено, будет сообщено сообщение об ошибке пониженное напряжение сети.

Наименование	Описание	Диапазон настройки	Значение по умолчанию
Защита от дисбаланса сети	0.0%~150.0%	0.0~150.0	4.0%

Установите защиту от дисбаланса сети, если это значение превышено, будет сообщено сообщение об ошибке дисбаланс сети.

Статический генератор реактивной мощности SVG

Описание параметров функции

Наименование	Описание	Диапазон настройки	Значение по умолчанию
Выбор резервного канала А-фаза цепи	0~65535	0~65535	0
Выбор резервного канала В-фаза цепи	0~65535	0~65535	0
Выбор резервного канала С-фаза цепи	0~65535	0~65535	0

Выбор резервного канала А, В и С-фазы цепи; зарезервированные функции.

Наименование	Описание	Диапазон настройки	Значение по умолчанию
Время автоматического сброса блокировки	1~5	1~5	5

Время автоматического сброса блокировки. После входа в состояние блокировки, если ошибка не будет удалена после времени сброса, превышающего это установленное значение, будет сообщение об ошибке автоматического сброса.

Наименование	Описание	Диапазон настройки	Значение по умолчанию
Интервал времени автоматического сброса	1~3600 сек	1 2600	60.00%
блокировки		1~3000	00 Cek

Интервал времени автоматического сброса блокировки.

Наименование	Описание	Диапазон настройки	Значение по умолчанию
Время ожидания выполнения подготовки	5.0~3600.0 сек	0.1~3600.0	12.0 сек

Время ожидания выполнения подготовки.

Наименование	Описание	Диапазон настройки	Значение по умолчанию
Время ожидания автоматического запуска	1.0~3600.0 сек	0.1~3600.0	5.0 сек

Время ожидания автоматического запуска.

5.7 Группа параметров связи

Коды функций в группе связи задают контент, связанный с системной связью.

Наименование	Описание	Диапазон настройки	Значение по умолчанию
Старший бит локального IP-адреса	0~0xFFFF	0~0xFFFF	0xC0A8
Младший битлокального IP-адреса	0~0xFFFF	0~0xFFFF	0x465

Задать локальный IP-адрес, IP-адрес по умолчанию —: 192.168.4.101.

Наименование	Описание	Диапазон настройки	Значение по умолчанию
Старший бит маски локальной подсети	0~0xFFFF	0~0xFFFF	0xFFFF
Младший бит маски локальной подсети	0~0xFFFF	0~0xFFFF	0xFF00

Установка маски локальной подсети, маска подсети по умолчанию - 255.255.255.0.

Наименование	Описание	Диапазон настройки	Значение по умолчанию
Локальный шлюз MSB	0~0xFFFF	0~0xFFFF	0xC0A8
Локальный шлюз LSB	0~0xFFFF	0~0xFFFF	0x401

Установка локального шлюза, шлюз по умолчанию —: 192.168.4.1.

Наименование	Описание	Диапазон настройки	Значение по умолчанию
Старший бит локального МАС	0~0xFFFF	0~0xFFFF	0x5254
Средний бит локального МАС	0~0xFFFF	0~0xFFFF	0x4C19
Младший бит локального МАС	0~0xFFFF	0~0xFFFF	0xF742

Установить локальный MAC адрес, локальный MAC-адрес по умолчанию —: 0x52544C19F742

Примечание.	Все установленнь	е производителем	IP, маска	подсети и	пользователь	МАС н	е могут	быть
изменены дл	я обеспечения норг	иальной связи с се	нсорным з	экраном.				

Наименование	Описание	Диапазон настройки	Значение по умолчанию
Локальный адрес MODBUS	1~247, 0-широковещательный адрес	1~247	1
Установка скорости MODBUS	0: 1200BPS 1: 2400BPS 2: 4800BPS 3: 9600BPS 4: 19200BPS 5: 38400BPS	0~5	4
Настройка проверки битов данных MODBUS	0: Нет проверки (N, 8, 2) дляRTU 1: Четность (E, 8, 2) дляRTU 2: Нечетность(O, 8, 2) дляRTU	0~2	1
Задержка ответа связи MODBUS	0~200мсек	0~200	5
Время сбоя связи MODBUS	0. 0~100.0 сек	0.0~100.0 сек	0
Обработка ошибок связи MODBUS	0: Обрабатываются как ошибки 1: Без обработки	0~1	0

Установите функциональные коды, относящиеся к протоколу связиМODBUS, обычно это значение по умолчанию. Обратите внимание, что когда время сбоя связи MODBUS установлено на 0, оценка работы не будет выполнена.

Наименование	Описание	Диапазон настройки	Значение по умолчанию
Старший бит расширения интернет	0~0XFFFF	0~0XFFFF	0XC0A8
портаIP	(старший бит)		
Младший бит расширения интернет портаIP	0~0XFFFF (младший бит)	0~0XFFFF	0X404
Старший бит расширения шлюза интернет портаIP	0~0XFFFF (старший бит)	0~0XFFFF	0XC0A8
Младший бит расширения шлюза интернет портаIP	0~0XFFFF (младший бит)	0~0XFFFF	0X401

Установите IP-порт расширения и шлюз. Доменный интернет-порт является необязательной частью и функцией, по умолчанию IP-адрес: 192.168.4.4; шлюз по умолчанию: 192.168.4.1.

Наименование	Описание	Диапазон настройки	Значение по умолчанию
-	0: Не подключен		
I ип протокола связи	1: PROFIBUS	0~1	0
Адрес модуля	0~99	0~99	2
Получение PZD2		0~20	1
ПолучениеPZD3		0~20	2
ПолучениеPZD4		0~20	3
ПолучениеPZD5		0~20	0
ПолучениеPZD6		0~20	0
ПолучениеPZD7	0: Недопустимо	0~20	0
ПолучениеPZD8	1~20: Резерв	0~20	0
ПолучениеPZD9		0~20	0
ПолучениеPZD10		0~20	0
ПолучениеPZD11		0~20	0
ПолучениеPZD12		0~20	0

Наименование	Описание	Диапазон настройки	Значение по умолчанию
ОтправкаPZD2	0: Недопустимо	0~30	1
ОтправкаPZD3	1: Неисправность	0~30	2
ОтправкаPZD4	главного контроллера тип	0~30	3
ОтправкаPZD5	2: Неисправность	0~30	4
ОтправкаPZD6	главного контроллера тип 3. Неисправность	0~30	5
ОтправкаРZD7	главного контроллера тип	0~30	6
ОтправкаРZD8	4: Ошибка звена цепи	0~30	7
ОтправкаPZD9	5: Номер звена цепи	0~30	8
ОтправкаРZD10	6: Ошибка состояния	0~30	0
ОтправкаРZD11	входных клемм	0~30	0
ОтправкаРZD12	7: Ошибка состояния выходных клемм пользователя 8: Слово аварийной сигнализации 9~30: Резерв	0~30	0
Время сбоя связи PROFIBUS	0.0~100.0 сек	0.0~100.0 сек	0.0 сек

Когда время сбоя связи PROFIBUS-связи установлено на 0.0, PROFIBUS не судит о превышении времени связи, в противном случае, если кадр запроса PROFIBUS не будет принят вовремя, будет сообщено сообщение о превышении времени связи PROFIBUS.

5.8 Группа заводских параметров

Эта группа представляет собой группу заводских параметров, которая должна использоваться техническими специалистами завода для настройки номинальных параметров. Не пытайтесь открыть эту группу параметров, так как неправильная модификация заводских параметров приведет к неправильной работе или повреждению SVG. Если изменение заводских параметров происходит с заменой внешнего силового трансформатора, трансформатора напряжения, трансформатора тока и датчика тока устройства, свяжитесь с производителем, чтобы изменить параметры в группе.

6 Установка и подключение

SVG состоит из изолирующего выключателя, соединительного реактора или трансформатора, вводного шкафа, силового шкафа и шкафа управления. Устройства должны размещаться надлежащим образом в соответствии с макетами и схемами установки выполненных по проекту.

Примечание: см. Раздел «Напольная установка высоковольтного статического генератора» для деталей.

6.1 Установка шкафов

1. Требования к окружающей среде при работе

Эффективность HYSDVG составляет более 99%, а потребление 1% преобразуется в тепловую энергию, поэтому необходимо учитывать теплоотдачу. Если место установки SVG слишком узкое, а окружающая температура относительно высока, требуется установка дополнительного воздушного охлаждения или кондиционера.

2. Требования о расстоянии между шкафами

См. Соответствующие технические чертежи для размера шкафа, типоразмеры и схемы установки SVG. Все шкафы должны быть установлены в соответствии с чертежами, и достаточное расстояние должно быть зарезервировано в периферийной зоне, чтобы обеспечить достаточный поток воздуха. При раскрытии дверей должно быть обеспечено достаточное пространство для обслуживания. Должно быть предусмотрено пространство для установки базовых каналов (расстояние между проходами и т. д.) и транспортировка вспомогательных устройств SVG.

Рис.6-1Диаграмма требований к установке устройства (вид спереди, единица измерения: мм)

Статический генератор реактивной мощности SVG

Рис.6-2 Диаграмма 2 для требований к установке устройства (вид сбоку, единица измерения: мм)

Рис.6-3Диаграмма 3 для требований к двухрядной установке (вид сбоку, единица измерения: мм)

См. Рис. 6-4 для охлаждающего воздуха SVG. Чтобы обеспечить эффект рассеивания тепла, пользователи должны обеспечить, чтобы расстояние до верхней части устройства и крыши соответствовало национальным стандартам и требованиям. Пользователи также могут установить централизованный воздуховод для дальнейшего снижения температуры окружающей среды, направляя горячий воздух после прохождения через центробежный вентилятор на улицу непосредственно через воздуховод.

Рис.6-4 Схема охлаждения устройства

3. Требования к основанию установки устройства

Шкаф SVG должен устанавливаться вертикально на ровной канальной стальной фундаментной раме, залитой бетоном. Общая неровная поверхность должна быть ниже 5 мм. Основание должно быть негорючим и влагонепроницаемым материалом, который имеет гладкую и неповрежденную поверхность и может выдерживать вес устройства. Кабельный канал должен быть негорючим, влагонепроницаемым и пыленепроницаемым материалом с неповрежденной поверхностью.

Рис.6-5Схема основных требований к установке устройства

4. Установка шкафов

SVG состоит из более чем трех шкафов. Согласно соответствующим требованиям, пользователи могут устанавливать один или несколько шкафов вертикально на фундамент с помощью кран или вилочного погрузчика.

После выравнивания монтажного соединения каждого шкафа припаяйте (приварите) его непосредственно к фундаменту. Соединительные кабели внутри и между шкафами должны быть подключены под руководством профессионалов нашей компании.

В некоторых случаях звено цепи устройств транспортируется в отдельных упаковках. После прибытия в пункт назначения установите звенья цепи в силовой шкаф под руководством профессионалов нашей компании.

- Убедитесь, что в корпусе или на радиаторе нет посторонних предметов, например, волокна, бумаги, древесных отходов, металлических фрагментов и т. д. в противном случае может произойти авария или пожар.
- Установка должна производиться на негорючих конструкциях, например, в основной канальной стали, иначе может произойти пожар.

Следующее руководство по установке подходит для общих условий установки в промышленной среде. Для применения в особых случаях проконсультируйтесь с нашей компанией для получения более подробных процедур установки.

Перед механической установкой убедитесь, что все вышеуказанные условия окружающей среды соблюдены.

1) Проверьте базовую горизонтальную плоскость с градиентом. Максимально допустимая общая неровная степень составляет не более 5 мм. Поверхность земли должна быть ровной.

2) Перемещение в положение установки.

3) Откройте все двери шкафа, тщательно проверьте, повреждены ли SVG и его устройства во время транспортировки. Если есть какая-либо поврежденная часть или недостающая часть, немедленно свяжитесь с нашим отделом технической поддержки и компанией-поставщиком. Пожалуйста, обратите внимание на то, как открывается дверь шкафа.

4) Проверьте, можно ли открыть или закрыть дверцу шкафа, если нет, отрегулируйте шкаф. Проверьте фиксацию фиксатора на двери: после включения питания можно открыть только переднюю дверцу главного распределительного шкафа.

5) Отрегулируйте шкаф и используйте крепежные болты для закрепления соседних шкафов.

6) Проводка внутри шкафа, установка, фиксация цепи устройства должны проводиться под руководством профессионалов нашей компании.

Примечание: Пожалуйста, обратите внимание на то, как открываются двери шкафа. Не открывайте дверь шкафа принудительно, в противном случае устройство может быть повреждено.

6.2 Установка высоковольтной части

1. Требования к стандартному распределению мощности высокого напряжения

При подключении к сети SVG должен подключаться через входной реактор или трансформатор, изолирующий выключатель, затем главный выключатель для доступа к высоковольтной сети; работа с сетью SVG разрешена только после замыкания главного выключателя QF.

Маркировка терминала		Наименование клемм	Описание
	А	Вход питания основной цепи, 1-йэтап	Подключение 3-фазы высокого напряжения переменного тока сети, 1-й этап
Вход	В	Вход питания основной цепи, 2-й этап	Подключение 3-фазы высокого напряжения переменного тока сети, 2-й этап
	с	Вход питания основной цепи, 3-й этап	Подключение 3-фазы высокого напряжения переменного тока сети, 3-й этап

2. Подключение вводного шкафа SVG

Подробные сведения см. в руководстве по монтажу.

3. Требования к устройствам и кабелям

Главный выключатель

Главный выключатель может быть вакуумным или воздушным, который должен отвечать требованиям по напряжению и току сети, но также требованиям к номинальному напряжению и току реактора.

Устройство защиты

Высоковольтный выключатель SVG на стороне сети должен быть надежно защищен.

Выключатель изоляции

Подключение реактора или силового трансформатора

4. Расположение кабеля высокого напряжения

- Расположение кабелей на стороне сети должно соответствовать национальным стандартам и соответствовать инструкциям и рекомендациям производителя кабеля.
- Рекомендуется использовать трехфазный экранированный кабель со стальным бронированием. Если используется однофазный кабель, трехфазный кабель необходимо объединить вместе для обеспечения характеристик ЭМС.

экранированного кабеля.

- Если поперечное сечение экранированного слоя кабеля составляет менее 50% от поперечного сечения
 1-фазы, необходимо добавить дополнительный провод заземления, чтобы предотвратить перегрев
- Кабель должен быть установлен с кабельным разъемом в соответствии с требованиями производителя кабеля.
- Заземление заземляющего провода соответствующего кабеля должно соответствовать национальным стандартам электромонтажа.

5. Заземление устройства

Пользователи должны использовать качественный провод заземления, сопротивление заземлению которого составляет менее 4 Ом. Шкаф и дверца шкафа SVG подключаются через провода, а все шкафы должны быть

соединены между собой стальной полосой. Точка заземления устройства, входящего в комплект, должна быть подключена к точке заземления сети с помощью медного кабеля, поперечное сечение которого не менее 50 мм². Перед тем, как вводить устройство в эксплуатацию, необходимо провести осмотр системы заземления для обеспечения безопасности устройства и физической безопасности.

6. Меры предосторожности

- Все электрические соединения SVG должны выполняться опытными инженерами-электриками в соответствии с национальными правилами, касающимися использования энергии.
- Все высоковольтные соединители должны быть обработаны с помощью изоляционных мер, чтобы обеспечить хорошую изоляцию.
- После параллельного подключения шкафов заземляющий медный стержень между шкафами должен быть соединен и обеспечен контакт.
- Элементы подключения высокого напряжения должны быть очищены в соответствии с требованиями к чистоте.
- Все работы должны выполняться при отключении основного питания и вспомогательного питания.
- Расстояние электроизоляции высоковольтной части должно соответствовать требованиям к электрическому безопасному расстоянию, чтобы избежать короткого замыкания вызванного разгрузкой.
 - Перед подключением убедитесь, что все источники входного питания отключены, иначе может произойти поражение электрическим током или пожар.
- Подключение кабелей должно выполняться только инженерами-электриками, иначе может произойти поражение электрическим током или пожар.
- Убедитесь, что корпус правильно заземлен, иначе может произойти поражение электрическим током или пожар.

- Все высоковольтные соединители должны обеспечить хорошую изоляции. Соединительная деталь высокого напряжения должна быть очищена в соответствии с требованиями к чистоте.
- Электрическое расстояние изоляции высокого напряжения должно соответствовать требованиям к электрическому безопасному расстоянию, чтобы избежать короткого замыкания, вызванного разрядом.
- Знак высоковольтной части должен быть четким и заметным, чтобы избежать неправильной работы.

6.3 Подключение клемм пользователя

1. Общее введение в клеммы пользователя

SVG имеет шесть цифровых входов, шесть релейных выходов и четыре аналоговых выхода. Все пользовательские терминалы программируются и могут быть установлены с помощью кодов функций.

Статический генератор реактивной мощности SVG Установка и подключение В SVG клеммы, используемые пользователем, подключаются к клеммной колодке. Обратите внимание, что проводка должна быть выполнена из клеммной колодки.

1) Описание клемм, используемых пользователем

Классифика ция	Маркиро вка клемм	Описание функций клемм	Техническая спецификация
Протокол	485+	Анод 485	 Стандартный 485 физический интерфейс,
связи RS-485	485—	Катод 485	Поддержка стандартного протокола связи MODBUS
Цифровой вход	S1~S6	Клеммы цифровых входов	 Когда РШопределен пользователем, сигнал РШ и цифровой входной сигнал образуют оптически изолированный вход Когда РШ - это напряжение питания 24 В, используйтеСОМ-сигнал в качестве цифрового входа для формирования оптической изоляции входа с РШ Свободная клемма Входное сопротивление: 3,3 кОм
Питание цифровых входов	PW	Питание цифровых входов	 Обеспечивает питание 24 В для пользователей Если нет питания для пользователей, подключите питание 24 В к системе и извлеките сигнал СОМ в качестве цифрового входного сигнала пользователя РW должен быть включен, чтобы цифровые входныеклеммы работали нормально. РW не подключается к источнику питания перед отправкой.
Напряжение 24 В	+24 B	Напряжение 24 В, используется для цифрового входа и высокоскоростного импульсного входа	 Максимальный выходной ток: 150мА
	COM	Заземление для 24 В	
Напряжение1 0 В	+10 B	Напряжение+10В, используется для аналоговых входов	 Максимальная выходная мощность: 20mA
	GND	Заземление для+10 В	
Релейный выход	RO1~RO6	Клеммы релейных выходов	 Описание: А общий, BNC, CNO Коммууникационная мощность: AC250B/3A, DC30B/3A
Анологорий	101 102	Клеммы аналоговых	♦ Клемма GND
Аналоговыи	AO1, AO2	выходов, токовый сигнал	♦ Импеданс≥ 5кОм
выход	, .00, , .04	4-20mA	◆ Диапазон: 4~20мА,импеданс: 100~500oM

Рис.6-6Схема подключения клемм пользователя

2. Меры предосторожности

\$	Для обеспечения нормальной работы SVG пользователи должны убедиться, что нормальная работа сигнальных проводов не будет нарушена различными электромагнетизмами, поэтому во время установки пользовательских кабелей управления убедитесь, что эти сигнальные провода установлены правильно.
*	Убедитесь, что кабели управления и питания, особенно высоковольтные линии высокого напряжения, разведены отдельно, чтобы избежать электромагнитных помех. Кабель управления не должен размещаться параллельно с силовым кабелем, однако, если такой ситуации не избежать, кабель управления и силовой кабель должны быть размещены на расстоянии не менее 30 см. Кабель управления и силовой кабель должны пересекаться под углом 90 °.
	Цифровой сигнальный кабель и кабель аналогового сигнала следует прокладывать отдельно, чтобы избежать взаимных помех
	Если сигнальный кабель и кабель питания должны быть направлены в одном и том же месте, необходимо принять меры защиты на сигнальном кабеле, чтобы уменьшить помехи, вызванные силовым кабелем, к сигнальному кабелю.
	Цифровой сигнальный кабель и кабель питания не могут быть направлены параллельно, чтобы избежать помех.
¢	Земля сигнального кабеля должна быть подключена к экранированной линии, а экранированный слой должен быть заземлен.
	При необходимости сигнальный кабель может быть подключен к внешнему устройству через металлическую проводящую втулку, таким образом, он может изолировать различные помехи сигнала, чтобы обеспечить нормальное функционирование устройства.
\$	Для уменьшения помех и ослабления управляющего сигнала длина проводки управляющего сигнала должна быть ограничена до 50 м.

- ♦ Обязательно проверьте правильность подключения после завершения монтажа.
- ♦ Не остались ли внутри устройства какие-либо винты или разъемы.
- ♦ Не ослаблены ли винты.
- ♦ Незамыкается ли оголенный провод на клеммной части с другими клеммами.

7 Пуск/остановка в процессе эксплуатации7.1 Быстрый запуск устройства

Убедитесь, что Вы полностью знакомы с функциями устройства и представлены настройки параметров перед выполнением быстрого запуска, в противном случае выполните шаг за шагом в соответствии с примечаниями.

(1) Режим управления КМ2, настроенный на заводе, является ручным режимом; блок-схема быстрого запуска показана на Рис. 7-1.

Рис.7-1 Блок-схема для быстрого запуска устройства

Включите устройство в этом режиме:

- 1) Убедитесь, что вводной шкаф находится в рабочем состоянии, верхний изолирующий разъединитель находится в замкнутом положении, а заземляющий разъединитель находится в открытом положении;
- Включите вторичную систему управления, наблюдайте за индикаторами (которые должны быть ВЫКЛ) на панели управления, сенсорный экран показывает, что QF, KM1, KM2 не включены, SVG находится в спящем режиме;
- Пользователь проверяет выключатель QF для подачи высокого напряжения на устройство SVG. На сенсорном дисплее отображается, что выключательQF находится в закрытом состоянии, и устройство находится в состоянии сна;
- Поверните переключатель «локальное / дистанционное» на панели шкафа управления в локальное состояние, нажмите контактный экран КМ2, замкните контактор, главный контактор КМ2 замыкается, сенсорный экран показывает, что КМ2 замкнут, а состояние устройства указывает на зарядку;
- 5) После запуска времени ожидания и подготовки загорается индикатор READY, устройство переходит в состояние готовности; если индикатор READY не включился через 12 секунд, то загорается индикатор неисправности, это означает, что устройство неисправно, перезагрузитесь после устранения неисправности.
- 6) После включения индикатора READY нажмите кнопку запуска на главном интерфейсе сенсорного экрана.

7) Убедитесь, что индикатор работы устройства включен, устройство переходит в состояние готовности к работе в сети.

(2) Заводская настройка режима управления KM2 в автоматическом режиме, схема быстрого запуска показана на Рис 7-2.

Рис.7-2Блок-схема для быстрого запуска устройства

Включите устройство в этом режиме:

- Убедитесь, что вводной шкаф находится в рабочем состоянии, верхний изолирующий разъединитель находится в замкнутом положении, а разъединитель заземления находится в открытом положении.
- Включите вторичную систему управления, наблюдайте за индикаторами на панели управления, и индикатор не может загореться, при этом отображаются сенсорные дисплеи QF, KM1, KM2 не закрыты, SVG находится в спящем режиме.
- Пользователь проверяет выключатель QF для подачи высокого напряжения на устройство SVG. На сенсорном дисплее отображается, что выключательQF находится в закрытом состоянии, и устройство находится в состоянии сна.
- 4) Поверните переключатель «локальное / дистанционное» на панели шкафа управления в локальное состояние, нажмите контактный экран КМ2, замкните контактор, главный контактор КМ2 замыкается, сенсорный экран показывает, что КМ2 замкнут, а состояние устройства указывает на зарядку; после запуска времени ожидания и подготовки загорается индикатор READY, устройство переходит в состояние готовности; если индикатор READY не включился через 12 секунд, то загорается индикатор неисправности, это означает, что устройство неисправно, перезагрузитесь после устранения неисправности.
- 5) После того, как загорится индикатор READY, подождите 5 секунд, загорается индикатор работы устройства, и устройство переходит в состояние готовности к работе в сети.

Примечание 1: Подтвердите, является ли состояние ожидания локальным или удаленным, и подтвердите режим работы и соответствующие настройки параметров. Подробности см. В 7.2. при замене платы сбора сигналов или основной панели управления, проверьте нулевой дрейф коэффициента трансформации, который должен быть установлен перед отправкой. (См. 5.3 для подробной информации о настройке и калибровке нулевого дрейфа преобразования).

Примечание 2: Когда режим управления КМ2 является дистанционным, после нажатия кнопки запуска он автоматически завершит процесс зарядки, будет готов и переходит в рабочее состояние, если есть ошибка, он перейдет в состояние ошибки. Потребуется период времени, чтобы автоматически перейти в рабочее состояние, а продолжительность времени зависит от времени готовности к запуску и настроек времени подготовки к автоматическому запуску.

Примечание 3: После состояния ошибки обработайте неисправность, основываясь на информации оошибке. Нажмите сброс, чтобы удалить информацию о неисправности после устранения ошибки. Если все неисправности удалены, нажмите «Сброс», чтобы восстановить состояние «Сон» или «Готово», если неисправность не может быть удалена, обратитесь к заводу-изготовителю.

7.2 Настройка параметров запуска

(1) Установка и подключение должны выполняться правильно в соответствии с инструкциями, и необходимо тщательно проверить установку и подключение.

(2) После включения питания выведите основной интерфейс на сенсорном экране, как показано на рисунке. 4-3, и пользователь будет входить в систему как оператор по умолчанию, связанные настройки параметров не допускаются. Пользователи могут нажать кнопку «Выход» на сенсорном экране, чтобы войти в интерфейс входа пользователя. Выберите имя пользователя в качестве менеджера, введите пароль входа, как показано на рисунке. 7-3. После входа в систему сенсорный экран возвращается к основному интерфейсу. Менеджер может щелкнуть соответствующие кнопки в главном интерфейсе для выполнения связанных операций.

(3) Введите «настройка параметров», параметр может быть изменен в режиме сна, готовности и отказа, однако некоторые параметры не могут быть изменены во время работы. Убедитесь, что настройки параметров каждой группы верны.

Рис.7-3 Интерфейс входа для менеджера

Задайте правильные рабочие параметры, как показано в таблице 7-1:

Таблица 7-1 Установка параметров перед запуском

Группа	Наименование	Описание параметра
Основная функциональная группа	Выбор режима «Пуск»	Выбор режима работы устройства
Основная функциональная группа	Канал команды «Пуск»	Выбор канала команды
Основная функциональная группа	Задание значения постоянной реактивной	Установка задания в режиме постоянной реакции
Основная функциональная группа	Выбор режима работы вентилятора	Установите режим работы вентилятора
Группа параметров РІ регулирования	Регулировка параметра PI	Устанавливается на заводе
Группа входных клемм	Параметры входных клемм	Набор, основанный на потребностях
Группа выходных клемм	Параметры выходных клемм	Выбор пользователя
Группа защит	Параметры защит	Выбор пользователя
Группа заводских настроек	Заводские настройки	Устанавливается на заводе

Примечание. При настройке в первый раз параметры в таблице выше устанавливаются на основе фактического состояния. После настройки эти параметры могут быть сохранены в энергонезависимой памяти для будущего использования.

Состояние работы устройства: сон, готовность, запуск, блокировка и ошибка. Когда устройство работает в определенном состоянии, соответствующее состояние будет отображаться в поле «Состояние работы» в главном интерфейсе сенсорного экрана;

Индикаторы устройства: готов, работа и ошибка. Когда загорается индикатор READY, это означает, что устройство готово к работе; когда загорается индикатор RUN, это означает, что устройство, подключенное к сети, включено; когда загорается индикатор FAULT, это означает, что устройство сталкивается с серьезной ошибкой;

Операционная кнопка: в главном интерфейсе сенсорного экрана есть следующие кнопки управления: закрытие KM2, открытие KM2, запуск, останов и сброс. RUN означает, что сеть подключена к сети: устройство остановки останавливается; сброс означает сброс записи о неисправности. Кнопки управления на панелях шкафа управления: удаленный / местный, аварийный останов. Удаленный / локальный означает, что устройство может выбрать команду управления для удаленного или локального управления; аварийная остановка означает, что пользователи могут остановить устройство в кратчайшие сроки.

7.3 Блок-схема устройства остановки

После запуска устройства, если пользователям необходимо остановить устройство, работайте в соответствии со следующими шагами:

Остановка устройства:

1) Нажмите кнопку остановки, индикатор RUNвыключится и индикатор готовности будет гореть;

2) Нажмите КМ2, чтобы открыть контактор, откройте главный контактор КМ2, сенсорный экран отобразит КМ2 ореп, КМ1 разомкнут, и индикатор READY выключится, устройство вернется в режим ожидания;

3) Пользователь работает на шкафу переключателя, чтобы открыть выключатель QF пользователя, сенсорный экран отображает QFopen;

4) Отключите питание системы вторичной системы управления;

5) Для переключения на осмотр откройте верхний изолирующий разъединитель пускового шкафа, замкните заземляющий разъединитель.

7.4 Меры предосторожности

(1) Последовательность операций: сначала включить вторичную систему управления, затем система управления оценивает состояние системы на основе обнаруженных величин состояния.

(2) Связанные параметры в SVG были установлены перед отправкой (основой является то, что пользователь предоставляет параметры, относящиеся к реальному случаю приложения), если пользователь не совсем хорошо знаком с устройством и системой загрузки, не изменяйте параметры по желанию, в противном случае система может столкнуться с проблемами или может быть понесена большая потеря.

(3) Во время нормальной работы не прикасайтесь к кнопкам управления, например настройке параметров сенсорного экрана, иначе может произойти неправильная работа системы.

(4) Во время работы на SVG пользователи должны соблюдать соответствующий протокол работы, и любой неправильный режим работы может повлечь физическое повреждение устройства.

(5) Технический персонал SVG должен быть хорошо подготовлен, иметь квалификационный сертификат для работы на электрическом устройстве и внимательно прочитать это руководство.

(6) Изолирующий выключатель, соединительный реактор или трансформатор, вводной шкаф и силовой шкаф относятся к опасной зоне высокого напряжения. Не открывайте дверцу шкафа или не работайте на устройстве при приложении высокого напряжения.

(7) Шкаф управления и другие шкафы используют технологию оптоволоконной связи и не выдерживают высокого напряжения, однако в шкафу имеется напряжение 380 В переменного тока, поэтому только уполномоченный

персонал, получивший профессиональную подготовку, может выполнять операции.

(8) Пользователи должны использовать продукт в соответствии с протоколом технического обслуживания установки устройства высокого напряжения и выполнять нашу работу строго в соответствии с настоящим руководством.

(9) Напряжение сети должно быть в пределах номинального диапазона.

(10) Последовательность включения питания и выключения питания должна быть следующей: сначала подайте мощность управления во время пуска, затем подайте мощность высокого напряжения; в то время как для остановки: сначала отключите высоковольтную мощность, затем отключите управляющую мощность;

(11) Пользователи должны в любое время отслеживать текущее состояние и останавливать работу устройства.

(12) Обеспечьте хорошую вентиляцию в помещении, чтобы поддерживать температуру окружающей среды в пределах 0-40 ° С.

8 Ошибки и способы устранения

SVG оснащен многочисленными и комплексными функциями защиты. Когда произошла ошибка, устройство может четко указать состояние неисправности и выполняет функцию защитного останова в соответствии с неисправностью. На сенсорном экране имеются индикаторы неисправностей и общие решения. Пользователи могут быстро оценить неисправность и принять соответствующие меры в соответствии с инструкциями, отображаемыми на интерфейсе записи ошибок. Неисправности SVG в основном делятся на неисправность основной системы управления и неисправность цепи, а основная неисправность системы может быть разделена на основную ошибку управления 1, ошибку основного управления 2 и ошибку основного управления 3.

8.1 Системные ошибки

№ ошибки	Наименование ошибки	Причины возникновения	Способ устранения
01	Сигнал тревоги устройства	 Порог срабатывания устройства слишком низкий Номинальные настройки параметров не совпадают 	 Измените порог срабатывания сигнализации Обратитесь в сервисный центр
02	Перегрузка по току	 Слишком низкаяуставка максимальной токовой защиты программного обеспечения Номинальные настройки параметров не совпадают 	Обратитесь в сервисный центр
03	Аппаратная перегрузка по току	 Модель датчика неверна или коэффициент трансформации не соответствует Ошибка системы 	 Проверьте, соответствует ли датчик коэффициенту трансформации Обратитесь в сервисный центр
04	Ошибка перенапряжения сети	 Модель датчика неверна или коэффициент трансформации не соответствует Слишком высокое напряжение сети 	 Проверьте, соответствует ли датчик коэффициенту трансформации Обратитесь в сервисный центр
05	Ошибка пониженного напряжения сети	 Проверьте, соответствует ли датчик коэффициенту трансформации Слишком низкое напряжение сети 	1.Проверьте, соответствует ли датчик коэффициенту трансформации 2.Обратитесь в сервисный центр
06	Общее перенапряжение постоянного тока	 Слишком высокое напряжение сети DC опорного напряжения или не соответствует настройка PI 	Обратитесь в сервисный центр
07	Общее пониженное напряжение постоянного тока	 Слишком низкое напряжение сетки DC опорного напряжения является слишком низким или не соответствует настройка PI 	Обратитесь в сервисный центр
08	Дисбаланс сети	1. Колебание нагрузки	Обратитесь в сервисный центр
09	Дисбаланс постоянного тока	1. Колебание нагрузки	Обратитесь в сервисный центр
10	Ошибки при потери фазы	 Отключение входного соединения сети или трансформатора напряжения Обнаружение неисправности цепи 	 Проверьте подключение кабелей Обратитесь в сервисный центр
11	Ошибка DSP и MCU	 Неисправность платы управления системой 	Обратитесь в сервисный центр

1. Главное управление: тип ошибки 1

№ ошибки	Наименование ошибки	Причины возникновения	Способ устранения
12	Неправильное первоначальное тока устройства	1.Неисправность цепи обнаружения тока устройства	1. Проверьте, не поврежден ли датчик Холла 2. Обратитесь в сервиный центр
13	Резерв	Резерв	Резерв
14	Неправильное первоначальное обнаружение тока сети	1.Схема обнаружения тока сети является неисправной	 Проверьте правильность подключения сетевого трансформатора сети Обратитесь в сервисный центр
15	Резерв	Резерв	Резерв
16	Ошибка перегрузки по току устройства	 Не соответствует настройка параметров устройства При непрерывной работе с перегрузкой в течение длительного периода времени 	Обратитесь в сервисный центр

2. Главное управление: тип ошибки2

№ ошибки	Наименование ошибки	Причины возникновения	Способ устранения			
01	Внешняя неисправность	 На клеммы поступил сигнал о внешней неисправности 	 Проверьте настройки клемм Обратитесь в сервисный центр 			
02	Ошибка доступа к двери	 Отключена линия обратной связи дверцы шкафа 	 Проверьте линию обратной связи двери шкафа 			
03	Неисправен вентилятор	 Вентилятор не запускается Линия обратной связи вентилятора отключена 	 Проверьте выключатель вентилятора Обратитесь в сервисный центр 			
04	Неисправность резервного питания	 Резервное питание не включено Отключена линия обратной связи резервного питания 	 Включите резервный выключатель питания Обратитесь в сервисный центр 			
05	Неисправность UPS	1. UPS отключен 2. Отключена линия обратной связиUPS	 Включитевыключатель UPS Обратитесь в сервисный центр 			
06	Сигнал перегрева реактора	 Температура окружающей среды слишком высокая Охлаждающие каналы реактора заблокированы Эффект охлаждения неодостаточен 	 Снизьте температуру окружающей среды Очистите сетку фильтра от пыли Обратитесь в сервисный центр 			
07	Неисправность датчика температуры реактора	1. Неисправен датчик температуры реактора	Обратитесь в сервисный центр			
08	Ошибка модуля связи MODBUS	1. Сбой связи MODBUS 2. Сбой связи PROFIBUS	 Проверьте подключение кабеля Обратитесь в сервисный центр 			
09	Ферроэлектриче ская память	 Неправильный / неверный параметр управления Ферроэлектрическая память повреждена 	Обратитесь в сервисный центр			
10	Ошибка MCU и DSP	1. Ошибка платы управления системой	Обратитесь в сервисный центр			
11	Отсутсвие основного питания	 Питание не включено Отключена линия обратной связи основного питания 	 Включите главный выключатель питания Обратитесь в сервисный центр 			
12	Аварийный останов	1. Нажата кнопка аварийного останова	 Отключите кнопку аварийной остановки Обратитесь в сервисный центр 			

№ ошибки	Наименование ошибки	Причины возникновения	Способ устранения	
13	Превышение времени автоматического сброса неисправности	 Время автоматического сброса превышено 	Обратитесь в сервисный центр	
14	Достигнуто время работы	 Время работы превышает установленное заводское время 	Обратитесь в сервисный центр	
15	Ошибка основного управления	 Неисправность основного питания Неисправность резервного питания 	 Основное питание не включено Резервное питание не включено Отключена линия связи основной / резервной мощности Обратитесь в сервисный центр 	
16	Отключение реактора по перегреву	 Температура окружающей среды слишком высокая Охлаждающие каналы реактора заблокированы Эффект охлаждения неодостаточен 	 Снизьте температуру окружающей среды Очистите сетку фильтра от пыли Обратитесь в сервисный центр 	

3. Главное управление: тип ошибки 3

№ ошибки	Наименование ошибки	Причины возникновения	Способ устранения		
01	Ошибка при зарядке	 Время выполнения подготовки слишком короткое Снижение напряжения сети 	 Время подготовки установлено правильно Обратитесь в сервисный центр 		
02	Ошибка при включении QF	 Ошибка линии обратной связи QF Неисправность линии управления QF 	 Проверить линию обратной связи QF Проверить линию управления QF Обратитесь в сервисный центр 		
03	Ошибка при выключении QF	 Ошибка линии обратной связи QF Неисправность линии управления QF 	 Проверить линию обратной связи QF Проверить линию управления QF Обратитесь в сервисный центр 		
04	Ошибка при включенииКМ1	 Ошибка линии обратной связи КМ1 Неисправность линии управленияКМ1 	 Проверить линию обратной связиКМ Проверить линию управленияКМ1 Обратитесь в сервисный центр 		
05	Ошибка при выключенииКМ1	 Ошибка линии обратной связи КМ1 Неисправность линии управления КМ1 	 Проверить линию обратной связи КМ1 Проверить линию управленияКМ1 Обратитесь в сервисный центр 		
06	Ошибка обратной связи заземляющего разъединителя	 Заземляющий разъединитель находится в положении заземления Неправильное подключение линии обратной связи 	 Переключить заземляющий разъединитель в состояние питания (без заземления) Обратитесь в сервисный центр 		
07	Ошибка резервирования «байпаса» звена цепи	 1.Количество «байпасов» на фазу превышает установленное допустимое значение 	 Заменить неисправную цепь Обратитесь в сервисный центр 		
08	Ошибка модуля связи PROFIBUS	3. 1.Сбой связи PROFIBUS	1.Проверьте пдключение кабеля 2.Обратитесь в сервисный центр		
09	Ошибка при работе в параллельном режиме	 1.Настройка режима не согласована при выполнении параллельной функции 	1.Установите одинаковый режим работы для всех параллельных устройств 2.Обратитесь в сервисный центр		

№ ошибки	Наименование ошибки	Причины возникновения	Способ устранения
10	Ошибка связи с параллельно й сетью Ethernet	 Ошибка при параллельном обмене Сетевой кабель не подключен 	1.Проверьте работу пи параллельном обмене 2.Перезагрузитесь 3.Проверьте подключеие кабеля
11	Ошибка параллельногоупарв еления / хоста	Ошибка параллельного упарвеления / хоста	Обратитесь в сервисный центр
12	Ошибка при включенииКМ2	 Ошибка линии обратной связи КМ2 Неисправность линии управления КМ2 	 Проверить линию обратной связи КМ2 Проверить линию управления КМ2 Обратитесь в сервисный
13	Ошибка при выключенииКМ2	 Ошибка линии обратной связи КМ2 Неисправность линии управления КМ2 	 Проверить линию обратной связи КМ2 Проверить линию управления КМ1 Обратитесь в сервисный центр

8.2 Ошибка звена цепи

При возникновении аварийной ситуации в звене цепи, SVG выдает одновременное сообщение обо всех существующих неисправностей. Всего 13 бит, и каждый бит представляет один тип ошибки. Когда произошел сбой в звене цепи, система сообщит о неисправности.

Бит	Наименование		
ошибки	ошибки	Причины возникновения	спосоо устранения
1	Ошибка восходящей связи	1. Соединитель волокна отключен	1. Повторное подключение
	по оптоволоконой линии	2. Поврежденное оптоволокно	2. Заменитеоптоволокно
	связи между звеньями	3. Ошибка звена цепи	3. Обратитесь в сервисный центр
	цепи		
2	Ошибка нисходящей	1. Соединитель волокна отключен	1. Повторное полключение
	связи пооптоволоконой	2. Поврежденное оптоволокно	2 Заменитеоптоволокно
	линии связи между		
	звеньями цепи		о. Соранноов в сорвнопын цонтр
3	Нет готовности звена	1. Неисправность платы управления	1. Замените неисправное звено
5	цепи	цепью	цепи
			2. Обратитесь в сервисный центр
4	Перенапряжение	1. Колебание тока	
-	взвене цепи	2. Напряжение сети слишком высокое	Соратитесь в сервисный центр
		3. Ошибка звена цепи	
5	Пониженное	1. Входное напряжение сети слишком	
5	напряжение в звене	низкое	провервте напряжение сети
	цепи		
6	Сбой питания в звене	1. Неисправность платы привода	Обратитесь в сервисный центр
Ŭ	цепи	цепи	Соратитеов в сервионым центр
		2. Неисправность платы питания цепи	
7	Перегрев в звене цепи	1. Температура окружающей среды	1. Снизьте
		слишком высокая	температуру
		2. Охлаждающие каналы в звене цепи	окружающей среды
		заблокированы	2. Очистите сетку фильтра от
		3. Эффект охлаждения неодостаточен	пыли
			3. Обратитесь в сервисный центр

В таблице перечислены отношения между битом ошибки и типом неисправности.

Бит ошибки	Наименование ошибки	Причины возникновения	Способ устранения		
8	Отказ «байпаса»	1. Силовой модуль поврежден	1.Замените модуль		
	звена цепи	· · · · · ·	2.Обратитесь в сервисный центр		
9	Потеря входного электропитания звена	 Неправильное подключение к клеммной колодкезвена цепи 	 Проверьте и снова подключите провода к клеммам 		
	цепи	2. Ошибка звена цепи	2. Обратитесь в сервисный центр		
10	Неисправность верхнего моста VCE	 Короткое замыкание выхода звена цепи Н мост прямое подключение 	Обратитесь в сервисный центр		
		3. Неисправность привода цепи			
11	Неисправность нижнего моста VCE	 Короткое замыкание выхода звена цепи Н мост прямое подключение Неисправность привода цепи 	Обратитесь в сервисный центр		
12	Аппаратное перенапряжение	 Колебания тока Слишком высокое напряжение сети 	 Уменьшите входное напряжение Обратитесь в сервисный центр 		
		3. Ошибка звена цепи			
13	Несовпадение звеньев цепи	 Звено цепи, настроенное заводом, не соответствует фактическому звену цепи 	Обратитесь в сервисный центр		

Например, если ошибка перенапряжения звена цепи произошла со звеном цепи A1, A2 и A3, сообщенная информация о неисправности будет "неисправностью звена цепи: перенапряжение звена цепи". Щелкните ABC «Chainlinkfault» в записи о неисправности, и все коды неисправностей, сообщенные звеном цепи, будут сообщены, как показано ниже. 0х8 на рисунке означает, что бит сбоя является четвертым битом, что соответствует перенапряжению цепи в таблице.

Рис.8-1 Вид кода ошибки звена цепи

8.3 Цепи байпаса (опция)

Когда произошла ошибка связи звена цепи, пользователи могут обойти эту цепь и обеспечить продолжение работы системы остальными звеньями цепи. Существует два вида действий по обходу, один из которых является внутренним байпасом, который автоматически отправляет команду обхода после того, как основная система управления обнаруживает ошибку связи звена цепи и отключает звено цепи, контролируя внутренний IGBT. После байпаса звено цепи по-прежнему подключается ко всему устройству в последовательном порядке, но его выходное напряжение равно нулю.

Когда произошли следующие сбои связи звена цепи, пользователи не могут управлять внутреннимIGBT, как обычно, и функция автоматического байпаса недоступна.

1) Ошибка восходящей линии связи звена цепи

- 2) Ошибка нисходящей линии связи звена цепи
- 3) Неисправность звена цепи
- 4) Ошибка верхнего мостаVCE
- 5) Ошибка нижнего моста VCE
- 6) Ошибка байпаса цепи связи

В это время пользователи могут осуществлять внешнее байпасное соединение вручную для осуществления байпаса. Во-первых, отключите высокое напряжение и подождите достаточно времени, чтобы конденсатор постоянного тока внутри звена цепи полностью разрядился, затем используйте короткую соединительную шину для короткого замыкания на клемму ACI цепи ACA и ACO и установите режим байпаса соответствующей фазы как внешний байпас, и ссылается на таблицу слов состояния байпаса для установки правильного слова состояния байпаса.

Примечание:

1. Внутренний байпас - полностью автоматический процесс, который не требует ручного вмешательства. Система будет настраиваться автоматически, и конфигурация не может быть изменена по желанию;

2. Пользователи могут установить слово состояния байпаса в любое время, когда необходимо протестировать функцию обхода, однако завершенная настройка не может быть изменена, если не включить питание и перезагрузить систему;

3. После байпаса информация о звен цепи будет проигнорирована; между тем индикатор подсветки звена цепи загорится, что является нормальным явлением;

4. При проведении теста внешнего байпаса и внутреннего байпаса пользователям следует тщательно проверить настройку режима байпаса и настройку состояния состояния байпаса. Неправильная настройка параметров может привести к непредсказуемой ошибке.

На приведенной ниже диаграмме показана блок-схема процесса обработки ошибки звена цепи:

Рис.8-2 Блок-схема для устранения сбоя цепи

8.4 Действия после ошибки устройства

После возникновения ошибки SVG система сохранит информацию о неисправности, отобразит информацию о неисправности и прекратит работу, а KM2 и KM1 разомкнуться.

SVG будет продолжать фиксировать ошибку, пока пользователь не удалит все неисправности и не нажмет кнопку сброса ошибки, после чего он восстановится до нормального состояния.

Сенсорный экран SVG может отобразить сотни неисправностей, произошедших недавно, и их соответствующую среду.

8.5 Общие неисправности и решения

При работе на SVG могут возникнуть следующие сбои: см. Нижеприведенные решения для анализа неисправностей:

Индикатор READY не может загореться:

- 1) Проверьте сенсорный экран, есть ли входное напряжение. Индикатор READY может загораться, только если имеется входное высокое напряжение;
- 2) Проверьте, имеется ли напряжение соответствующих звеньях цепи? Если соответствующее звено цепи не имеет напряжения, после выключения питания проверьте проводку между реактором и звеном цепи;
- 3) Если звено цепи имеет напряжение, но индикатор READY все еще не может загореться, проверьте, все ли звенья цепи SVG находятся под напряжением.

9 Обслуживание и хранение устройства

9.1 Обзор

Для обеспечения долговременной надежной работы SVG требуется ежедневная проверка и периодические проверки. В этой главе в основном представлены меры предосторожности, касающиеся обслуживания SVG.

9.2 Техническое обслуживание

1. Ежедневная проверка

Элементы	Описание	Метод/критерий
Окружающая среда	 Проверьте окружающую среду, влажность, вибрацию (есть ли пыль, жирная грязь и капли воды); Проверьте, есть ли посторонние предметы в устройстве. 	Визуальный осмотр или через приборы. Соблюдайте технические спецификации. Посторонние предметы не размещены.
Сенсорный дисплей	Является ли дисплей сенсорного экрана достаточно ярким?	Визуальный осмотр; Очистить дисплей
Каркасная конструкция	 Наличие вибрации или шума; Не болтаются ли крепежные элементы, например болты; Имеются ли деформации, повреждения или царапины; Есть ли пыль, грязь или ржавчина. 	Визуальный осмотр; Норма
Вентилятор охлаждения	Наличие повышенной вибрации и шума.	Визуальный осмотр; Норма
Воздуховод	Есть ли блокировка или прикрепленный посторонний объект.	Визуальный осмотр; Норма
Реактор	 Возникает ли аномальное повышение температуры; Существует ли ненормальный шум. 	Визуальный осмотр.
Высоковольтный контактор	Наличие повышенной вибрации и шума.	Визуальный осмотр; Норма
Силовой трансформатор (если есть)	 Есть ли утечка масла; Проверить, изменяется ли цвет силикона в эксикаторе из-за влажности; Загрязнено ли масло трансформатора или уровень масла ниже нижней части основания из-за испарения. 	Визуальный осмотр. Отсутствие утечки масла; без изменения цвета силикона; уровень масла трансформатора не ниже нижней части основания.

2. Плановое (периодическое) техническое обслуживание

Общие процедуры для периодического технического обслуживания

(1) Отключите все источники питания SVG: отключите основное питание и вспомогательную мощность устройства.
(2) Подождите 30 минут, подтвердите, выполнен ли элемент (1); проверьте состояние разряда звене цепи устройства.
(3) Убедитесь, что выключатель отключен и приняты меры заземления.
(4) Откройте дверцу шкафа SVG, проверьте элемент по позиции (см. Таблицу периодического
обслуживания)
(5) Проведите техническое обслуживание SVG. Если имеется трансформатор, проверьте
трансформатор в соответствии с его инструкциями по эксплуатации и техническому обслуживанию.
(6) Подтвердите проверку технического обслуживания.
(7) Технический осмотр завершен.

Список технического обслуживания высоковольтного статического генератора реактивной мощности

	Позиция.	_		Период							
No.	подлежащая	Элементы для проверки	Описание	Ежедн	Пе	Периодичность		Метод проверки	Критерий	инструмен	Замечани
	проверке	проворки		евно	Год	2-года	3-года				
1		Окружающая среда	Температура, влажность, пыль, и т.д	•				Наблюдение	Температура окружающей среды составляет 0 ~ 40 ° С без заморозки; RH составляет менее 90% без конденсации	Термометр, гигрометр	
2		Вся система	Вибрация и шум	•				Наблюдать и слушать	Норма		
3		Напряжение сети	Напряжение сети в норме	•				Наблюдайте напряжение сети, отображаемое в интерфейсе	-15%, +10%Номинальное напряжение		
4	Bce	Напряжениецепе й управления	Напряжение цепей управления в норме	•				Измерьте входное напряжение цепей управления	AC380 B±10%	Мультиметр	
5		HMI	Правильность отображения информации	•				Наблюдение	Отображаемые данные должны быть в нормальном диапазоне, а операции в пределах нормы		
6		Противопылевой фильтр	Есть ли закупорки или пыль	•				Наблюдение	Проверите количество воздуха каждого порта воздуховода с листом бумаги А4. Бумага А4 должна прилипать к сетке фильтра		
	Основные	основные цепи Все	(1)Затяжка болтов, винтов и т.д.		•	•	•	(1) Проверить и закрепить (2) Наблюдение	(1)~(2)Норма		
7	цепи		(2) Перегрев деталей и компонентов		•	•	•				
			(3)Очистка				•				
		Поключение	(1) Отсутствие наклона проводов		•	•	•				
8		проводов и кабелей	(2) Отсутвие повреждений изоляции		•	•	•	Наблюдение	Норма		
		Клеммный блок	Отсутвие повредений		•	•	•	Наблюдение	Норма		
		Буферный резистор	(1)Изменение цвета (2) Отсутвие повреждений		●	•	•	Наблюдение	Норма		
9		Контактор	 Наличие следов нагара Свободен ли механизм сцепления Повреждена ли камера дуговой разрядки 		•	•	•	Наблюдение	Норма		

Статический генератор реактивной мощности SVG

Обслуживание и хранение устройства

No.	Позиция, подлежащая проверке	Элементы для проверки	Описание	Период							
				Ежедн	Периодичность			Метод проверки	Критерий	Инструмен т	Замечани
				евно	Год	2-года	3-года				Ŭ
		Изолирующий разъединитель	(1) Контакты чистые (2) Свободен ли механизм сцепления		•	•	•	Наблюдение	Норма		
10	Система охлаждения	Вентилятор охлаждения	(1) Наличие вибрации или шум	•				 (1) Поверните его рукой после отключения питания (2) Проверить и закрепить 	(1) Плавное вращение (2) Норма		
			(2) Свободные ли соединительные детали		•	•	•				
11	Дисплей	Дисплей	(1) Отображение на дисплее четкое	•				(1) Значения (2) Очистите с			Отображе ние
			(2) Очистка		•			хлопчатобумажной тканью, не используйте органический растворитель для очистки			должно
											быть нормальн ым
12		Индикаторы	Свечение индикаторов	•				Подсветка соответствует требованиям	Выполнить требования к конструкции		

3. Меры предосторожности при обслуживании

SVG учитывает физическую безопасность, однако, как и любое силовое устройство, многие внутренние терминалы SVG по-прежнему несут смертельное высокое напряжение. Кроме того, радиатор и другие внутренние компоненты имеют высокую температуру; поэтому пользователи должны следовать данным принципам при касании и работе на SVG.

- Пользователи должны быть хорошо обучены и знакомы со структурой этого устройства и освоили знания и меры предосторожности, касающиеся фактической работы.
- Только персонал, получивший вышеуказанные тренинги, может работать и обслуживать это устройство.
- Пользователи могут прикасаться к частям внутри шкафа только тогда, когда SVG не находится под напряжением (высокое напряжение и напряжение цепей управления), и нет высокой температуры.
- Во время проверки пользователи должны отключить верхнюю изоляцию пускового шкафа и замкнуть заземляющий разъединитель.
- Во время технического обслуживания пользователи должны соблюдать правила работы с высоким напряжением, такие как ношение защитных перчаток, изоляционных ботинок и защитных очков.
- Во время работы должен присутствовать другой наблюдательный персонал.
- Защитная ограда (обозначенная знаком «Опасность! Высокое напряжение») должна быть установлена и не может быть удалена во время использования.
- Не размещайте горючие материалы (чертежи устройств и руководства по эксплуатации) рядом с SVG.
- Будьте предельно осторожны при обращении или измерении внутренних частей SVG, чтобы избежать короткого замыкания контактов приборов или прикосновения к другим клеммам.
- В целях безопасности не запускайте SVG, когда дверь шкафа открыта.
- Не выключайте питание вентилятора и системы охлаждения, когда основная цепь находится в работе, иначе устройство может быть повреждено из-за перегрева.
- При перемещении SVG поверхность должна быть ровной и гладкой.
- При обслуживании неисправностей пользователи могут регистрировать только неисправность и заменять цепь, если необходимо, и дальнейший ремонт должен быть передан на завод.
- Звено цепи может быть заменено только после отключения питания SVG более 15 минут.
- Любая неправильная операция может привести к травме или повреждению SVG.
- Обязательно соблюдать меры предосторожности, указанные в данном руководстве по эксплуатации.
- Обязательно соблюдать эти меры предосторожности во избежание физического повреждения и повреждения устройства.

9.3 Хранение

Устройство может работать на холостом ходу и храниться в течение длительного времени по различным причинам, что может увеличить частоту отказов устройства. Чтобы предотвратить такую ситуацию, обратите внимание на следующие моменты, когда устройство будет находиться в режиме ожидания или хранения в течение длительного периода времени:

- Окружающая среда места хранения должна быть в основном такой же, как и в рабочей среде, а именно: не должно быть пыли или капель воды, относительная влажность не должна превышать 95%, а температура должна быть в пределах -40 ° C ~ 70 ° C.
- Устройство должно быть покрыто водонепроницаемой мембраной, чтобы предотвратить повреждение устройства, вызванное непрерывным проникновением капель воды и влажности.
- Внутреннее устройство должно быть снабжено водопоглощающими материалами.
- Периодически удаляйте влагу из устройства.

Статический генератор реактивной мощности SVG

- Периодически проводить контроль при включении.
- Меры предосторожности при транспортировке и хранении
 - Транспортировка устройства должна соответствовать требованиям GB / T 4798.2-2008. Во время транспортировки обращайтесь с осторожностью и поместите устройство пополам; держите устройство подальше от дождевых капель, прямых солнечных лучей, сильной вибрации и аварии.
 - SVG не должен подвергаться воздействию прямых солнечных лучей или капель дождя. Место хранения SVG должно хорошо вентилироваться при температуре окружающей среды от -40 °С до

+ 70 °C, а относительная влажность не должна превышать 95% (относительно температуры воздуха 20 °C ± 5 °C). Место хранения должно быть свободным от агрессивных газов, и срок хранения не может превышать шести месяцев.
Приложение 1

Общие сведения о ЭМС

Сокращение электромагнитной совместимости, ЭМС – это термин, используемый для описания того, насколько хорошо устройство или система могут функционировать в электромагнитной среде без введения электромагнитных помех, которые мешают работе других электрических продуктов в окружающей среде. ЭМС включает электромагнитные помехи и электромагнитный иммунитет.

ЭМС можно разделить на два типа на основе маршрута излучения: проводимые помехи и излучаемые помехи. Проводящие помехи - это интерфейс, передаваемый проводниками. Все проводники, например, проводники, линии передачи, индукторы и конденсаторы, являются каналами передачи для проводимого излучения.

Излучаемая помеха – это помеха, передаваемая в виде электромагнитной волны. Выброшенная энергия пропорциональна квадратным метрам расстояния.

ЭМС должна одновременно выполнять три условия или элементы: источник помех, канал излучения, чувствительный приемник. Проблема ЭМС должна быть решена из этих трех аспектов. Для пользователей проблема ЭМС должна решаться главным образом через канал излучения.

Емкость ЭМС различных электрических / электронных устройств варьируется, поскольку стандарты ЭМС или уровни ЭМС, используемые различными устройствами, разнообразны.

Характеристики ЭМС для SVG

Как и другие электрические / электронные устройства, SVG служит как источником электромагнитных помех, так и электромагнитным приемником в системе управления распределением энергии. Принцип работы SVG определяет, что он будет генерировать определенное количество электромагнитных помех. Для обеспечения надежной работы системы в определенной среде ЭМС она должна быть спроектирована с использованием помехоустойчивости ЭМС. Во время работы характеристики ЭМС в основном проявляются в следующих аспектах:

- Выходное напряжение представляет собой высокочастотную волну ШИМ-модуляции, которая будет формировать синфазное и дифференциальное напряжение между фазами или между фазой и землей. Соответственно, ток утечки будет увеличиваться, чтобы нанести сильный внешний электромагнитный импульс наружу, что скажется на надежности других электрических устройств в одной и той же системе.
- 2) В качестве приемника электромагнитного излучения SVG может привести к неправильной работе или повреждению генератора из-за сильного внешнего импульса, что влияет на нормальную работу.
- Помехоустойчивость системы и встроенная противоинтерференционная способность генератора дополняют друг друга. Процесс уменьшения помех также является процессом улучшения системной помехи.

Общие принципы ЭМС при подключении SVG

В этой главе указаны общие принципы ЭМС, касающиеся прокладки кабелей и заземления, представленные для установки.

1. Принцип для кабелей

Электропроводка: для SVG высоковольтный вход питания и экранированный кабель высокого напряжения должны быть заземлены должным образом.

Классификация устройств: Различные электрические устройства в одной и той же системе распределения электроэнергии имеют разные мощности в области электромагнитных помех и шума, что требует от нас классификации этих устройств в шумном устройстве и чувствительном к шуму устройстве. Устройства, относящиеся к одному и тому же типу, должны быть установлены в одной и той же области, в то время как устройство в разных типах следует держать отдельно друг от друга на расстоянии более 20 см.

Проводка внутри шкафа управления: во время монтажа сигнальные линии и линии электропередач должны быть направлены в разные области, и их нельзя прокладывать близко (в пределах 20 см) параллельно или в чередовании или в комплекте вместе. Если сигнальная линия должна проходить через линию электропередач, между ними должен поддерживаться угол 90 °.

2. Принцип заземления

SVG должен быть правильно заземлен во время работы. Основание может защитить устройство и физическую безопасность, а также самое простое, самое эффективное и недорогое решение проблемы EMC.

Заземление делится на три типа: заземление через специальный заземляющий электрод, заземление через общий заземляющий электрод и заземление через последовательное соединение проводов заземления. Различные системы управления должны использовать заземление через специальный заземляющий электрод; разные устройства в одной и той же системе должны использовать общий заземляющий электрод; разные устройства в одной и той же линии питания должны использовать заземление через последовательное соединение через посследовательное.

Приложение2

Протокол связи MODBUS

SVG обеспечивает интерфейс связи RS485 и использует стандартный коммуникационный протокол MODBUS для обмена ведущими / ведомыми. Пользователи могут осуществлять интегрированное управление через сенсорный экран, ПЛК и управлять верхним компьютером (установить команду управления генератором var, изменить соответствующие коды функций, рабочее состояние и информацию о неисправностях монитора и т. Д.), Чтобы соответствовать конкретным требованиям приложения.

Общее введение в протокол связи MODBUS

Протокол последовательной связи MODBUS использует единую основную и многовекторную топологическую структуру. Ведущие / ведомые узлы соединены через шину 485.

Рис.1 Схема для последовательной связи MODBUS

Основным (мастером) узлом обычно является ПЛК, управляющий верхний компьютер или сенсорный экран; подчиненный (ведомый) узел является генератор, адрес подчиненного устройства определяется группой связи -> локальным адресом MODBUS в генераторе (диапазон 1-247). Не должно быть повторяющегося адреса подчиненного узла в той же сети MODBUS.

Связь MODBUS должна инициироваться ведущим узлом; подчиненный узел может реагировать только на команду, отправленную главным узлом. В командах, инициированных главным узлом, необходимо сначала назначить адрес подчиненного узла, за которым следует конкретное содержимое команды; ведомый узел непрерывно проверяет команду, посланную главным узлом шины MODBUS, если он принимает команды, а адрес является адресом этого подчиненного узла, тогда подчиненный узел будет действовать в соответствии с командой ведущего узла и отвечать соответственно. Если команда главного узла эффективна для всех подчиненных узлов, тогда установите адрес команды в 0 (так называемый широковещательный адрес), и все подчиненные узлы действуют, но не отвечают.

Формат данных связи протокола MODBUS SVG разделен на режим RTU (удаленный терминал) и ASCII (американский стандартный код для информационного обмена) для связи.

Режим RTU использует двоичный режим для передачи данных. Каждый переданный байт представляет собой цифру 0-255. Режим ASCII использует текстовый режим для передачи данных, он сначала преобразует данные, которые будут отправлены в шестнадцатеричный текст, а затем отправляет код ASCII теста. Поскольку режим ASCII имеет низкую эффективность, он редко используется сейчас. Это устройство поддерживает только режим RTU.

Например: для данных 255;

Режим RTU: занять один байт, содержимое этого байта: 0xff

Кадр связи MODBUS (командный фрейм главного узла и кадр ответа подчиненного узла) включает в себя подчиненный адрес, командное слово, информацию данных и информацию проверки.

Ведомая адресная часть информации ответа и части слова команды совпадает с частью информации команды, на которую она отвечает. Разница между информацией ответа и информацией о команде заключается в структуре информационных данных.

Структура информационных данных различного командного слова меняется; структура данных команды ответа (ответа) одного и того же командного слова одинакова. Следовательно, структура данных и положение контрольной информации могут быть определены посредством принятого командного слова.

Режим RTU и режим ASCII имеют различный режим проверки.

Структура кадра связи режима RTU

Кадр связи режима RTU содержит подчиненный адрес, командное слово, информацию о данных, информацию проверки, а также время простоя не менее 3,5 типов между соседними двумя байтами. Это время простоя используется для обозначения конца старого кадра, а данные после этого простоя служат началом нового кадра.

Байт-структура связи MODBUS

Для последовательной связи передача выполняется в байтах, каждый байт содержит отправляемый контент, бит начала, бит конца и бит проверки. Такая информация будет обрабатываться чипами автоматически, но также необходима настройка пользователями.

Структура байтов показана ниже:

Start bit	Byte information	Check bit	Stop bit	
-----------	------------------	-----------	----------	--

Для связи MODBUS стартовый бит имеет только 1 бит, используйте логику 1, в то время как бит останова может быть 1 бит или 2 бит, используйте логику 0. Бит проверки занимает 1 бит и может выбирать нечетную четность, даже проверку четности или отсутствие контроля четности, Протокол связи MODBUS должен гарантировать, что сумма контрольного бита и стопового бита равна 2.

Для режима RTU информация о байте должна занимать 8 бит.

Параметры структуры для байта режима RTU в стандартной связи MODBUS показаны ниже:

No.	Mode	Start bit	Byte length	Check bit	Stop bit
0	RTU	1bit	8bit	No parity check (0bit)	2bit
1	RTU	1bit	8bit	Even parity (1bit)	1bit
2	RTU	1bit	8bit	Odd parity (1bit)	1bit

Из таблицы выше видно, что длина кадра байт режима RTU составляет 11 бит.

Режим проверки ошибок кадров

Режим проверки фрейма в основном включает две части, а именно проверку бит байта (четность / четность) и всю проверку данных кадра (режим RTU использует проверку CRC).

1) Проверка битов байтов

Этот вид проверки в основном используется для обеспечения правильности кадра байта, который может быть реализован путем добавления контрольного бита до конечного бита кадра байта. Это может быть нечетная четность или даже четность. Пользователи могут отказаться от этой проверки. Настройка и конфигурация этого контрольного бита описаны в части структуры байта в главе связи MODBUS.

Нечетная четность заключается в том, чтобы гарантировать, что число логических 1, содержащихся в кадре байта, является нечетным, установив этот контрольный бит в 0 или 1. Даже четность заключается в том, чтобы гарантировать, что номер логики 1, содержащийся в кадре байта, равен даже установке этой проверки бит до 0 или 1. Например: содержимое кадра байта перед битом проверки равно 100000111B, если выбрана нечетная четность, бит проверки равен «1»; если выбрана четность, бит проверки равен '0'.

2) Режим проверки CRC, используемый в режиме RTU

Кадр режима RTU обеспечивает правильность кадра, добавляя два байта (16 бит) контрольного слова CRC к контрольной части. Принимающее устройство может вычислить значение CRC для всех данных до получения определенного кадра и сравнить его с значением CRC получаемой контрольной части. Если эти два значения CRC различны, это означает, что передача ошибочна.

CRC сначала сохраняет 0xFFFF, затем вызывает процесс обработки более шести непрерывных байтов в кадре и

значения текущего регистра. Только 8 бит каждого символа действует на CRC, бит начального бита, стопового бита и четности / контроля четности недействителен.

Во время генерации CRC каждый 8-разрядный символ находится в XOR с содержимым регистра отдельно, и результат перемещается в сторону младшего значащего бита (LSB), тогда как самый старший бит (MSB) заполняется 0. LSB извлекается, если LSB равен 1, регистр находится в XOR с заданным значением отдельно; если LSB равно 0, тогда никакой операции. Весь процесс будет повторяться восемь раз. После того, как окончательный бит (8-й бит) будет завершен, следующий 8-разрядный байт будет в XOR с текущим значением регистра отдельно. Наконец, значение в регистре - это значение CRC после выполнения всех байтов в кадре.

Этот алгоритм CRC принимает стандартное правило проверки CRC. Во время редактирования алгоритма CRC пользователи могут ссылаться на соответствующий стандартный алгоритм CRC для записи вычислительной программы CRC, которая удовлетворяет требованиям.

Теперь мы предоставляем простую функцию вычисления CRC для ссылки пользователя (запрограммированной на языке C):

```
unsigned int crc_cal_value (unsigned char *data_value,unsigned char data_length)
{
    int i;
    unsigned int crc_value=0xffff;
    while (data_length--)
    {
        crc_value^=*data_value++;
            for (i=0;i<8;i++)
            {
            if (crc_value&0x0001) crc_value= (crc_value>>1) ^0xa001;
            else crc_value=crc_value>>1;
            }
        return (crc_value);
    }
```

Описание данных связи соответствующих командному слову 03Н

В стандартном протоколе MODBUS командное слово 03Н означает непрерывное чтение N слов (N ≤ 16). Структура данных его кадра связи показана ниже:

Примечание:

1. При чтении N слов номер байта в ответной информации равен M = N*2

2. Номер считываемой командной информации занимает два байта, номер байта ответного сообщения занимает

один байт

Например: для режима RTU адрес подчиненного устройства – это узел, чей подчиненный адрес равен 01H,

начальный адрес памяти 0004Н, чтение двух слов непрерывно, затем:

Кадр команд хоста:

Frame interval	Slave address	Command word	Start address information		Read number information		CRC	check
3.5-type	1 byte	1 byte	High	Low	High	Low	Low	High
transmission time	01H	03H	00H	04H	00H	02H	85H	CAH

Кадр ответа ведомого:

Frame interval	Slave	Command	Byte	04 address data		ta 05 address data		04 address data 05 address data		CRC	check
	address	word	number								
3.5-byte transmission	1 byte	1 byte	1 byte	High	Low	High	Low	Low	High		
time	01H	03H	04H	00H	00H	00H	00H	85H	CAH		

Примечание. Помимо CRC порядок расположения других 16-битных слов: MSB-LSB. Для слова CRC порядок расположения полного слова: LSB для MSB.

Описание данных связи соответствующих командному слову 06Н

В стандартном протоколе MODBUS командное слово 06Н означает запись одного слова (слова) на указанный адрес.

Структура данных его кадра связи выглядит следующим образом:

Например: для режима RTU напишите 5000 (1388H) генератору var, подчиненный адрес которого равен 02H, и в память, адрес которой 0008H, затем:

Кадр команд хоста:

Frame interval	Slave address	Command word	Command Write address word information		Write inforn	e data nation	CRC	check
3.5-byte	1 byte	1 byte	High	Low	High	Low	Low	High
transmission time	02H	06H	00H	08H	13H	88H	05H	6DH

Кадр ответа ведомого:

Frame i	nterval	Slave address	Command word	ommand Write address word information		Write inforn	e data nation	CRC	check
3.5-t	oyte	1 byte	1 byte	High	Low	High	Low	Low	High
transmiss	sion time	02H	06H	00H	08H	13H	88H	05H	6DH

Примечание. Помимо CRC, последовательность полного слова другого 16-битного: MSB-LSB. Для слова CRC последовательность полного слова: LSB для MSB

Описание адреса связи

Эта часть представляет собой определение адреса данных связи, которое используется для управления работой SVG, получения информации о состоянии устройства и установки связанных функциональных параметров.

(1) Правило представления относительного адреса параметров функции

Возьмите адрес кода функции как соответствующий адрес регистра параметра, однако он должен быть преобразован в шестнадцатеричную систему. Например, если адрес «группа параметров защиты» -> «пропорция защиты от перенапряжения сетки» является десятичной 1285, то адрес этого функционального кода, представленного в шестнадцатеричном формате, равен 0505H. Диапазоны MSB и LSB: MSB-00 ~ 0F; LSB-00 ~ FF. Примечание: Заводская группа параметров: параметры, установленные производителем, которые невозможно прочитать или изменить; некоторые параметры не могут быть изменены, когда генератор var находится в рабочем состоянии; в то время как некоторые параметры не могут быть изменены в любом состоянии; при изменении параметров функционального кода обратите внимание на диапазон уставок, блок и соответствующие инструкции для параметра.

(2) Инструкции по	о конкретному	адресу	функции:
	s normpornionly	адросу	φ, π.μ.

Функция	Определение адреса	Значение данных	Умножение	Атрибут R/W	
	0000	1 Each function code group occupies 100H		Check	
Группа базовых	000011	butes		function	
функций	FFFH	2 Relative address		code	
				table	
Команда «Пуск»	1000H	Write 0001H to enter running	1	W	
Оманда «Стоп»	1001H	Write 0001H to stop running	1	W	
Команда «Сборс»	1002H	Write 0001H to reset fault	1	W	
Командауправления замыканиемQF	1003H	Write 0001H to close QF/KM2	1	W	
Командауправления разамыканиемQF	1006H	Write 0001H to open QF/KM2	1	W	
		0001H: running state	1		
	3000H	0002H: ready state	1		
0		0003H: fault state	1		
Состояние устроиства		0004H: sleep state	1	к	
		0005H: lock state	1		
		0006H: charging state	1		
	2001	Boost-type SVG selection: 0: non-boost type;	1	D	
	30018	1: boost type	I	ĸ	
	3003H	Remote local state	1	R	
	3004H	High voltage QF open state	1	R	
	3005H	High voltage KM1 open state	1	R	
	3006H	User input terminal	1	R	
	3007H	User output terminal	1	R	
	3008H	Chain link bypass state	Reserved	Reserved	
	3009H	U-phase bypass chain link	Reserved	Reserved	
Группа запроса	300AH	V-phase bypass chain link	Reserved	Reserved	
состояния	300BH	W-phase bypass chain link	Reserved	Reserved	
	300CH	U-phase bypass chain link	Reserved	Reserved	
	300DH	V-phase bypass chain link	Reserved	Reserved	
	300EH	W-phase bypass chain link	Reserved	Reserved	
	300FH	Chain link version	1	R	
	3010H	DSP software version	1	R	
	3011H	MCU software version	1	R	
	3012H	FPGA software version	1	R	
	3013H	Accumulated running time	1	R	
	3014H	Rated device capacity	100	R	

Функция	Определение	Значение данных	Умножение	Атрибут
• •	адреса			R/W
	3015H	Grid voltage reference	100	R
	3016H	Rated device voltage	100	R
	3017H	Rated device current	100	R
	3018H	Setup of effective chain link	1	R
	3019H	Connection reactor	100	R
	301AH	QF automatic mark bit	1	R
	301BH	Remote state word	1	R
	301CH	Local parallel mode selection	1	R
	301DH	KM2 open state	1	R
	301EH	KM2 built-in state	1	R
	301FH	KM2 control mode	1	R
	3020H	A1 chain link bus	10	R
	3021H	A2 chain link bus	10	R
	3022H	A3 chain link bus	10	R
	3023H	A4 chain link bus	10	R
	3024H	A5 chain link bus	10	R
	3025H	A6 chain link bus	10	R
	3026H	A7 chain link bus	10	R
	3027H	A8 chain link bus	10	R
	3028H	A9 chain link bus	10	R
	3029H	A10 chain link bus	10	R
	302AH	A11 chain link bus	10	R
	302BH	A12 chain link bus	10	R
	302CH	B1 chain link bus	10	R
	302DH	B2 chain link bus	10	R
	302EH	B3 chain link bus	10	R
	302EH	B4 chain link bus	10	R
	3030H	B5 chain link bus	10	R
	3031H	B6 chain link bus	10	R
	3032H	B7 chain link bus	10	R
	3033H	B8 chain link bus	10	R
	303311	B0 chain link bus	10	P
	303411	Be chain link bus	10	
	3035H	B10 chain link bus	10	
	2027	B11 chain link bus	10	
	3037日	B12 chain link bus	10	R D
	30300	C1 chain link bus	10	ĸ
	3039H		10	ĸ
	303AH		10	R
	303BH	C4 chain link bus	10	ĸ
	303CH		10	ĸ
	303DH		10	ĸ
	303EH	C/ chain link bus	10	R –
	303FH	C8 chain link bus	10	R
	3040H	C9 chain link bus	10	R
	3041H	C10 chain link bus	10	R
	3042H	C11 chain link bus	10	R
	3043H	C12 chain link bus	10	R
	3044H	Sum of chain link bus of A-phase	1	R

Функция	Определение адреса	Значение данных	Умножение	Атрибут R/W
	3045H	Sum of chain link bus of B-phase	1	R
	3046H	Sum of chain link bus of C-phase	1	R
	3047H	Grid phase sequence	1	R
	3048H	PCC-phase sequence	1	R
	3049H	Reserved	1	R
	304AH	A1 chain link fault	1	R
	304BH	A2 chain link fault	1	R
	304CH	A3 chain link fault	1	R
	304DH	A4 chain link fault	1	R
	304EH	A5 chain link fault	1	R
	304FH	A6 chain link fault	1	R
	3050H	A7 chain link fault	1	R
	3051H	A8 chain link fault	1	R
	3052H	A9 chain link fault	1	R
	3053H	A10 chain link fault	1	R
	3054H	A11 chain link fault	1	R
	3055H	A12 chain link fault	1	R
	3056H	B1 chain link fault	1	R
	3057H	B2 chain link fault	1	R
	3058H	B3 chain link fault	1	R
	3059H	B4 chain link fault	1	R
	305AH	B5 chain link fault	1	R
	305BH	B6 chain link fault	1	R
	305CH	B7 chain link fault	1	R
	305DH	B8 chain link fault	1	R
	305EH	B9 chain link fault	1	R
	305FH	B10 chain link fault	1	R
	3060H	B11 chain link fault	1	R
	3061H	B12 chain link fault	1	R
	3062H	C1 chain link fault	1	R
	3063H	C2 chain link fault	1	R
	3064H	C3 chain link fault	1	R
	3065H	C4 chain link fault	1	R
	3066H	C5 chain link fault	1	R
	3067H	C6 chain link fault	1	R
	3068H	C7 chain link fault	1	R
	3069H	C8 chain link fault	1	R
	306AH	C9 chain link fault	1	R
	306BH	C10 chain link fault	1	R
	306CH	C11 chain link fault	1	R
	306DH	C12 chain link fault	1	R
	306EH	Number of chain link per phase	1	R
	306FH	Alarm state word of the device	1	R
	3070H	Type 1 of current main controller fault	1	R
	3071H	Type 2 of current main controller fault	1	R
	3072H	Type 3 of current main controller fault	1	R
	3073H	Currentchain link fault	1	R
	3074H	Chain link number at current fault	1	R

```
Приложение 2
```

Функция	Определение адреса	Значение данных	Умножение	Атрибут R/W
	3075H	Device output current at current fault	10	R
	3076H	Grid voltage at current fault	100	R
	3077H	Chain link bus voltage at current fault	10	R
	3078H	Chain link temperature at current fault	10	R
	3079H	User input terminal state at current fault	1	R
	307AH	User output terminal state at current fault	1	R
	307BH	Alarm mark	1	R
	307CH	Fault mark	1	R
	307DH	Lock mark	1	R
	307EH	Offline judgment	1	R
	307FH	Factory password	1	R
	3080H	Load power factor	1000	R
	3081H	DC imbalance degree	100	R
	3082H	Grid imbalance degree	100	R
	3083H	Load imbalance degree	100	R
	3084H	Grid current A-phaseTHD	100	R
	3085H	Grid current B-phaseTHD	100	R
	3086H	Grid current C-phaseTHD	100	R
	3087H	Load current A-phaseTHD	100	R
	3088H	Load current B-phaseTHD	100	R
	3089H	Load current C-phaseTHD	100	R
	308AH	Grid AB line voltage THD	100	R
	308BH	Grid BC line voltage THD (reserved)	100	R
	308CH	Grid CA line voltage THD (reserved)	100	R
	308DH	Present fault A-phase total DC capacitor voltage	1	R
	308EH	Present fault B-phase total DC capacitor voltage	1	R
	308FH	Present fault C-phase total DC capacitor voltage	1	R
	3090H	A1 chain link temperature	10	R
	3091H	A2 chain link temperature	10	R
	3092H	A3 chain link temperature	10	R
	3093H	A4 chain link temperature	10	R
	3094H	A5 chain link temperature	10	R
	3095H	A6 chain link temperature	10	R
	3096H	A7 chain link temperature	10	R
	3097H	A8 chain link temperature	10	R
	3098H	A9 chain link temperature	10	R
	3099H	A10 chain link temperature	10	R
	309AH	A11 chain link temperature	10	R
	309BH	A12 chain link temperature	10	R
	309CH	B1 chain link temperature	10	R
	309DH	B2 chain link temperature	10	R
	309EH	B3 chain link temperature	10	ĸ
	309FH	B4 chain link temperature	10	ĸ
	3UAUH	B5 chain link temperature	10	ĸ
	30A1H	B6 chain link temperature	10	R

Функция	Определение адреса	Значение данных	Умножение	Атрибут R/W
	30A2H	B7 chain link temperature	10	R
	30A3H	B8 chain link temperature	10	R
	30A4H	B9 chain link temperature	10	R
	30A5H	B10 chain link temperature	10	R
	30A6H	B11 chain link temperature	10	R
	30A7H	B12 chain link temperature	10	R
	30A8H	C1 chain link temperature	10	R
	30A9H	C2 chain link temperature	10	R
	30AAH	C3 chain link temperature	10	R
	30ABH	C4 chain link temperature	10	R
	30ACH	C5 chain link temperature	10	R
	30ADH	C6 chain link temperature	10	R
	30AEH	C7 chain link temperature	10	R
	30AFH	C8 chain link temperature	10	R
	30B0H	C9 chain link temperature	10	R
	30B1H	C10 chain link temperature	10	R
	30B2H	C11 chain link temperature	10	R
	30B3H	C12 chain link temperature	10	R
	30B4H	Energy calculation time	1	R
	30B5H	Overall efficiency	100	R
	30B6H	Active power of the grid	1	R
	30B7H	Active power of the load	1	R
	30B8H	Active power of the device	1	R
	30B9H	Reactive power of the grid	1	R
	30BAH	Reactive power of the load	1	R
	30BBH	Reactive power of the device	1	R
	30BCH	Grid A-phase DC component	10	R
	30BDH	System A-phase fundamental wave current amplitude	10	R
	30BEH	System current A-phase2-order harmonic amplitude	10	R
	30BFH	System current A-phase 3-order harmonic amplitude	10	R
	30C0H	System current A-phase 4-order harmonic amplitude	10	R
	30C1H	System current A-phase 5-order harmonic amplitude	10	R
	30C2H	System current A-phase 6-order harmonic amplitude	10	R
	30C3H	System current A-phase 7-order harmonic amplitude	10	R
	30C4H	System current A-phase 8-order harmonic amplitude	10	R
	30C5H	System current A-phase 9-order harmonic amplitude	10	R
	30C6H	System current A-phase 10-order harmonic amplitude	10	R
	30C7H	System current A-phase 11-order harmonicamplitude	10	R
	30C8H	System current A-phase 12-order harmonic amplitude	10	R

Приложение 2

Функция	Определение адреса	Значение данных	Умножение	Атрибут R/W
	30C9H	System current A-phase 13-order harmonic amplitude	10	R
	30CAH	System current A-phase 14-order harmonic amplitude	10	R
	30CBH	System current A-phase 15-order harmonic amplitude	10	R
	30CCH	System current A-phase 16-order harmonic amplitude	10	R
	30CDH	System current A-phase 17-order harmonic amplitude	10	R
	30CEH	System current A-phase 18-order harmonic amplitude	10	R
	30CFH	System current A-phase 19-order harmonic amplitude	10	R
	30D0H	System current A-phase 20-order harmonic amplitude	10	R
	30D1H	System current A-phase 21-order harmonic amplitude	10	R
	30D2H	System current A-phase 22-order harmonic amplitude	10	R
	30D3H	System current A-phase 23-order harmonic amplitude	10	R
	30D4H	Reserved	Reserved	R
	30D5H	Reserved	Reserved	R
	30D6H	A1 chain link version	1	R
	30D7H	A2 chain link version	1	R
	30D8H	A3 chain link version	1	R
	30D9H	A4 chain link version	1	R
	30DAH	A5 chain link version	1	R
	30DBH	A6 chain link version	1	R
	30DCH	A7 chain link version	1	R
	30DDH	A8 chain link version	1	R
	30DEH	A9 chain link version	1	R
	30E0H	A10 chain link version	1	R P
	30E1H	A11 chain link version	1	R
	30E2H	A12 chain link version	1	R
	30E3H	B1 chain link version	1	R
	30E4H	B2 chain link version	1	R
	30E5H	B3 chain link version	1	R
	30E6H	B4 chain link version	1	R
	30E7H	B6 chain link version	1	R
	30E8H	B7 chain link version	1	R
	30E9H	B8 chain link version	1	R
	30EAH	B9 chain link version	1	R
	30EBH	B10 chain link version	1	R
	30ECH	B11 chain link version	1	R
	30EDH	B12 chain link version	1	R

иложение	2

тический генератор реа	р реактивной мощности SVG Прил			Приложен
Функция	Определение	Значение данных	Умножение	Атрибут
	адреса			R/W
	30EEH	C1 chain link version	1	R
	30EFH	C2 chain link version	1	R
	30F0H	C3 chain link version	1	R
	30F1H	C4 chain link version	1	R
	30F2H	C5 chain link version	1	R
	30F3H	C6 chain link version	1	R
	30F4H	C7 chain link version	1	R
	30F5H	C8 chain link version	1	R
	30F6H	C9 chain link version	1	R
	30F7H	C10 chain link version	1	R
	30F8H	C11 chain link version	1	R
	30F9H	C12 chain link version	1	R
	30FAH	Total grid active power	100	R
	30FBH	PCC bus total active power	100	R
	30FCH	Total load active power	100	R
	4000H	Total grid reactive power	100	R
	4001H	Grid reactive A-phase	100	R
	4002H	Grid reactive B-phase	100	R
	4003H	Grid reactive C-phase	100	R
	4004H	Grid working frequency	100	R
	4005H	Grid power factor	1000	R
Ĩ	4006H	Total device reactive power	100	R
	4007H	Device reactive A-phase	100	R
	4008H	Device reactive B-phase	100	R
	4009H	Device reactive C-phase	100	R
	400AH	Total load reactive power	100	R
	400BH	Load reactive A-phase	100	R
	400CH	Load reactive B-phase	100	R
	400DH	Load reactive C-phase	100	R
	400EH	Load power factor	1000	R
	400EH	Grid voltage AB	1000	R
	400111	Grid voltage RC	100	
	401011	Grid voltage CA	100	
			100	
	4012H	PT side voltage AD	100	
		PT side voltage CA	100	
		F I Side Vollage CA	100	R P
	40101	Device A-phase current	10	к Г
_	4016H	Device B-phase current	10	ĸ
Группа	4017H		10	ĸ
осциллографирования	4018H	Grid P share sweet	10	ĸ
	4019H	Grid B-phase current	10	R -
	401AH	Grid C-phase current	10	R –
	401BH	PCC bus voltage AB effective value	100	R -
	401CH	PCC bus voltage BC effective value	100	R
	401DH	PCC bus voltage CA effective value	100	R
	401EH	PCC bus A-phase current effective value	10	R
	401FH	PCC bus B-phase current effective value	10	R
	4020H	PCC bus C-phase current effective value	10	R

Функция	Определение	Значение данных	Умножение	Атрибут	
адреса			100	R/W	
	4021H	PCC bus reactive A-phase	100	ĸ	
	4022H	PCC bus reactive B-phase	100	R	
	4023H	PCC bus reactive C-pnase	100	R	
	4024H	PCC bus total reactive power	100	ĸ	
	4025H	PCC bus working frequency	100	ĸ	
	4026H	PCC bus power factor	1000	R	
	4027H	Analog A/D0 input value	1	R	
	4028H	AnalogA/D1 input value	1	R	
	4029H	AnalogA/D2 input value	1	R	
	402AH	AnalogA/D3 input value	1	R	
	402BH	AnalogA/D4 input value	1	R	
	402CH	AnalogA/D5 input value	1	R	
	402DH	AnalogA/D6 input value	1	R	
	402EH	AnalogA/D7 input value	1	R	
	402FH	AnalogA/D8 input value	1	R	
	4030H	AnalogA/D9 input value	1	R	
	4031H	AnalogA/D10 input value	1	R	
	4032H	AnalogA/D11 input value	1	R	
	40221	Grid-connected point voltage A transient	100	Р	
	4033⊓	value	100	ĸ	
	4034H	Grid-connected point voltage B transient	100	P	
		value	100		
	4035H	Grid-connected point voltage C transient value	100	R	
	4036H	PCC voltage phase lock signal	1	R	
	4037H	PCC bus voltage A-phase transient value	100	R	
	4038H	PCC bus voltage B-phase transient value	100	R	
	4039H	PCC, bus voltage C-phase transient value	100	R	
	403AH	PCC, bus A-phase current transient value	10	R	
	403BH	PCC bus B-phase current transient value	10	R	
	403CH	PCC bus C-phase current transient value	10	R	
	403DH	Grid A-phase current transient value	10	R	
	403EH	Grid B-phase current transient value	10	R	
	403EH	Grid C-phase current transient value	10	R	
	403i H	Load A-phase current transient value	10	R	
		Load R phase current transient value	10	P	
	404111	Load C phase current transient value	10	P	
	404211	Grid-connected point voltage phase lock	10	IX.	
4043H		signal	1	R	
	4044H	Device side voltage A-phase transient value	100	R	
	4045H	Device side voltage B-phase transient value	100	R	
	4046H	Device side voltage C-phase transient value	100	R	
	4047H	Device A-phase current transient value	10	R	
	4048H	Device B-phase current transient value	10	R	
	4049H	Device C-phase current transient value	10	R	
	404AH	A-phase total DC capacitor voltage	1	R	
	404BH	B-phase total DC capacitor voltage	1	R	
	404CH	C-phase total DC capacitor voltage	1	R	

```
Приложение 2
```

Функция	Определение адреса	Значение данных	Умножение	Атрибут R/W
	404DH	Grid total active power	100	R
	404EH	Grid activeA-phase	100	R
	404FH	Grid activeB-phase	100	R
	4050H	Grid activeC-phase	100	R
	4051H	PCC bus total active power	100	R
	4052H	PCC bus activeA-phase	100	R
	4053H	PCC bus activeB-phase	100	R
	4054H	PCC bus activeC-phase	100	R
	4055H	Total load active power	100	R
	4056H	Load activeA-phase	100	R
	4057H	Load activeB-phase	100	R
	4058H	Load activeC-phase	100	R

См. Таблицу функциональных кодов приложения 3 для относительного адреса базовой функциональной группы

Примечание. Инструкции умножения для конкретной функции. Например, умножение рабочей частоты сетки с адресом 4004H равно 100, значение, считанное по протоколу Modbus, составляет 5000 Гц, тогда фактическая рабочая частота сетки = значение считывания / 100, а именно: 5000 Гц / 100 = 50,00 Гц.

Ответное сообщение при неправильной связи

Когда подчиненный отвечает мастеру, он использует поле кода функции, чтобы указать либо нормальный (безошибочный) ответ, либо произошла какая-либо ошибка (называемая ответом на исключение). Для нормального ответа ведомое устройство просто перекликается с исходным кодом функции. Для ответа на исключение ведомый возвращает код, который эквивалентен исходному функциональному коду ceroMSB, установленным в логическую 1.

Например: сообщение от ведущего к ведомому, чтобы прочитать группу адресных данных кода функции генератора var, будет иметь следующий код функции:

0 0 0 0 0 0 1 1 (hexadecimal03H)

Если подчиненное устройство принимает запрошенное действие без ошибок, оно возвращает тот же код в своем ответе. Если возникает исключение, оно возвращается:

1 0 0 0 0 0 1 1 (hexadecimal83H)

В дополнение к его модификации кода функции для ответа на исключение подчиненное устройство помещает уникальный код в поле данных ответного сообщения. Это говорит ведущему, какая ошибка произошла, или причина исключения.

На прикладную программу ведущего устройства лежит ответственность за обработку ответов об исключениях. Типичными процессами являются последующие повторные попытки сообщения, попытки диагностических сообщений подчиненному устройству и уведомление операторов.

	Код исключения MODBUS				
Код	Наименование	Значения			
01H	Illegal function	Код функции, полученный в запросе, не является допустимым действием для ведомого. Это может быть связано с тем, что функциональный код применим только к более новым устройствам и не был реализован в выбранном устройстве. Это также может указывать на то, что ведомое устройство находится в неправильном состоянии для обработки запроса этого типа			
02H	Illegal data address	Адрес данных, полученный в запросе, не является допустимым адресом для верхнего компьютера. Более конкретно, комбинация адреса регистра и длины передачи недействительна.			
03H	lllegal data value	Значение, содержащееся в поле данных запроса, не является допустимым значением для ведомого. Это указывает на ошибку в структуре остатка сложного запроса. Это НЕ означает, что элемент данных, отправленный для хранения в регистре, имеет значение, не зависящее от ожидаемой прикладной программы			

06H	Slave device busy	Система занята (EPPROM находится во время хранения).
11H	Check error	В информации о кадре, отправленной верхним компьютером, когда бит проверки CRC в формате RTU или бит проверки LRC в формате ASCII отличается от номера вычисления проверки нижнего компьютера, будет сообщено сообщение об ошибке.
12H	Parameter modification is invalid	В команде записи параметров, отправленной на верхнем компьютере, отправленные данные выходят за пределы диапазона параметров или адрес записи в настоящее время не поддается изменению, или записываемая функция выбора входного терминала занята другими терминалами

Приложение 3

1. Введение в протокол PROFIBUS-DP

PROFIBUS – это международный, открытый и независимый от поставщика протокол связи, который широко используется в производстве, производстве, конвертировании, автоматизации зданий и других отраслях автоматизации.

В соответствии с различными требованиями и требованиями к PROFIBUS существуют в основном три типа: PROFIBUS-DP, PROFIBUS-PA и PROFIBUS-FMS.

Протокол PROFIBUS поддерживает одну ведущую или многомашинную систему. Токовая передача принимается между ведущими станциями, и передача ведущего / ведомого осуществляется между ведущей станцией и ведомым. Станция-хост (обычно программируемый логический контроллер (PLC)) выбирает узел для ответа на команду хозяина, передачу пользовательских данных циклического ведущего / ведомого и нециклическую передачу данных ведущего / ведомого; хост также может отправлять команду нескольким узлам в форме широковещательной передачи, а узлу не нужно посылать сигнал обратной связи хосту. В сети PROFIBUS узлы не могут связываться друг с другом (а именно, ведомые устройства не могут связываться друг с другом через протокол PROFIBUS).

PROFIBUS-DP - это распределенная система ввода-вывода, она может заставить хост использовать большое количество периферийных модулей и полевых устройств. Передача данных является периодической: хост считывает входную информацию от подчиненного устройства и посылает сигнал обратной связи на подчиненный. Плата связи EC-TX-103 поддерживает протокол PROFIBUS-DP.

PROFIBUS-DP посещает службу уровня канала передачи данных PROFIBUS (уровень 2) через точки доступа к службе (SAP), и каждый SAP несет определенную функцию. Подробнее см. Руководство пользователя для PROFIBUSMasterStation и стандарта EN50170 (протокол PROFIBUS).

SVG использует плату расширения (например, плату EC-TX-103 DP), которая поддерживает протокол PROFIBUS-DP и использует режим связи ведущий / ведомый. Как правило, он периодически обменивается данными с HYSDVG.

1.1 Правила обозначения

Правила обозначения карты связи, модели продукта:

Знак	Значение	Описание	
1	Категория	ЕС: Карта расширения	
	продукта		
2	Тип карты связи	ТХ: Карта связи	
3	Версия	Нечетное число используется для представления технической версии, например 1.3.5 и 7 представляют 1-ю. 2-ю. 3-ю и 4-ю версии	
4	Поддержка протоколов связи	03: Карта связиPROFIBUS+Ethernet 04: Карта связиEthernet+CAN	

1.2 Карта связиЕС-ТХ-103

EC-TX-103 является дополнительной частью SVG, которая используется для подключения SVG к сети PROFIBUS. В сети PROFIBUS SVG является ведомым устройством. С помощью карты связи EC-TX-103 могут быть реализованы следующие функции:

- Отправьте команду управления (запуск, останов, сброс сбоев и т. Д.) В SVG;
- Отправьте опорный сигнал скорости или момента на SVG;

- Чтение значения состояния и фактического значения из SVG;
- Измените значение параметра SVG.

Что касается команд, поддерживаемых SVG, обратитесь к описанию связанных функций. Структурная схема для SVG, подключаемого к шине PROFIBUS, показана ниже:

Рис.1 Диаграмма структуры опорных точек шины PROFIBUS

1.3 Структура структуры платы связи ЕС-ТХ-103

Рис.2 Внешний вид платы связи ЕС-ТХ-103

1. Разъемдля панели управления; 2. Разъем шины связи; 3. Терминатор шины; 4. Индикатор; 5. Разъем для Ethernet

1.4 Совместимые модели ЕС-ТХ-103

Плата связи ЕС-ТХ-103 совместима со следующими продуктами:

- Плата связи EC-TX-103 и SVG.
- Все хост-станции, поддерживающие протокол PROFIBUS-DP.

1.5 Комплект поставки

Содержимое пакета коммуникационной карты ЕС-ТХ-103 включает:

- Плата связи ЕС-ТХ-103
- Три винта (M3x10)
- Руководство по эксплуатации

Если какой-либо элемент отсутствует, свяжитесь с нашей компанией или поставщиком. Материалы могут изменяться с улучшением продукта без предварительного уведомления.

1.6 Установка платы связи ЕС-ТХ-103

1.6.1 Механическая установка платы связи ЕС-ТХ-103

- 1. Окружающая среда
 - Температура: 0°С~+40°С
 - RH: 5%~95%

• Другие климатические условия: отсутствие конденсации, заморозка, дождь, снег или град. Излучение солнечного света составляет менее 700 Вт / м2, давление воздуха составляет 70 ~ 106 кПа

- Содержание солевого тумана и агрессивного газа: Уровень загрязнения 2
- Содержание пыли и твердых частиц: Уровень загрязнения 2
- Вибрация и удар: когда синусоидальная вибрация составляет 9 ~ 200 Гц, она составляет 5,9 м / с² (0,6 G)
- 2. Процедура установки:
 - Закрепите коммуникационную карту на плате управления с помощью винтов.

• Вставьте коммуникационную карту в указанное положение на плате управления и закрепите ее на медную стойку с помощью винтов.

- Установите переключатель шины шины коммуникационной карты в нужное положение.
- 3. Примечание

Перед установкой отключите все источники питания устройства и подождите, по крайней мере, три минуты, чтобы конденсатор полностью разрядился. Отключите опасное напряжение от внешней цепи управления до входа устройства и входных клемм.

Некоторые электронные компоненты на плате платы EC-TX-103 чувствительны к электростатической чувствительности, поэтому не прикасайтесь к печатной плате голыми руками. Если пользователи должны работать на электронной плате, надевайте заземленный браслет.

1.6.2 Электрическая установка платы связи ЕС-ТХ-103

1. Выбор узла

Адрес узла - единственный адрес устройства на шине PROFIBUS. Номер адреса узла выбирается адресом ротационного узла на плате связи. Адрес узла – это двузначное число в пределах 0-99. Переключатель слева - это первая цифра, а справа - вторая цифра.

Node address = 10 x the first digit value + the second digit value x 1

2. Терминатор шины

Для обеспечения бесперебойной работы в начале и конце каждой секции есть терминатор шины. DIP-переключатель на печатной плате RPBA-01 используется для включения терминатора шины. Терминатор шины может предотвратить отражение сигнала на конце кабеля шины. Если коммуникационная карта является последним или первым модулем в сети, терминатор шины должен быть установлен в положение ON. Когда используется разъем D-sub, в котором PROFIBUS используется встроенный терминатор, необходимо отключить терминатор коммуникационной карты EC-TX-103.

1.6.3 Сетевое подключение шины платы связиЕС-ТХ-103

1. Интерфейс шины связи

Передача через экранированную витую медную пару (соответствует стандарту RS-485) является одним из наиболее распространенных способов передачи PROFIBUS, а кабель - экранированная витая медная пара.

Основные характеристики технологии передачи:

- Сетевая топология: линейная шина с двумя концами, несущая активный резистор шины.
- Скорость передачи: 9,6 бит / с ~ 12 М бит / с.

• Среда передачи: экранированная витая пара, или пользователи могут отменить экранированный эффект в зависимости от состояния окружающей среды (ЭМС).

- Номер станции: 32 станции на секцию (без повторителя), может быть до 127 станций (с ретранслятором).
- Штекерное соединение: 9-контактный разъем D-типа, распределение контактов разъема приведено ниж е :

Nº∣	pin	Описание
1	-	Unused
2	-	Unused
3	B-Line	Data positive (twisted pair 1)
4	RTS	Send request
5	GND_BUS	Isolation ground
6	+5V BUS	Isolated 5V DC power
7	-	Unused
8	A-Line	Data negative (twisted pair 2)
9	-	Unused
Housing	SHLD	PROFIBUS cable shielded line

+ 5V и GND-_ BUS используются для терминатора шины. Некоторым устройствам, например оптическому приемопередатчику (RS485), может потребоваться получить внешнее питание от этих контактов.

В некоторых устройствах направление передачи определяется RTS. В обычном приложении используются только линии A и B, а также экранированный слой.

Рекомендуется использовать стандартный разъем DB9 от SIEMENS. Если требуемая скорость обмена данными больше 187,5 кбит / с, кабельные соединения должны выполняться в соответствии со стандартом проводки SIEMENS.

2. Повторитель

В каждой секции может быть до 32 станций (мастер-станция и ведомые станции), когда станции определенного уровня превышают 32, для подключения каждой секции шины должен использоваться повторитель. Как правило, количество повторителей, подключенных последовательно, не может превышать трех.

Примечание. У репитера нет адреса станции, однако он рассчитан на максимальный номер станции каждого раздела.

1.6.4 Скорость передачи и максимальное расстояние передачи

Максимальная длина линии зависит от скорости передачи. В приведенной ниже таблице показано соотношение между скоростью передачи и расстоянием передачи.

Скорость передачи (Kbps)	A-tуре длина (m)	B-tуре длина (m)
9.6	1200	1200
19.2	1200	1200
93.75	1200	1200
187.5	1000	600
500	400	200
1500	200	
12000	100	

Параметры, относящиеся к линии передачи

Скорость передачи (Kbps)	А-tуре длина (m)	B-tуре длина (m)
Импеданс (Ом)	135~165	100~130
Емкость на единицу длины (оF / а)	< 30	< 60
Сопротивление цепи (Ом / км)	110	
Диаметр сердечника кабеля (мм)	0.64	> 0.53
Сечение сердечника кабеля (мм²)	> 0.34	> 0.22

Помимо передачи через экранированную витую медную пару, PROFIBUS может также принимать передачу волокна в случаях, когда электромагнитные помехи сильны, что удлиняет расстояние высокоскоростной передачи. Существует два типа волоконных проводников для передачи, один из которых - недорогой проводник из пластмассы, который используется, когда расстояние передачи меньше 50 м, а другое - проводка из стекловолокна, которая используется, когда расстояние передачи меньше 1км.

1.6.5 Схема подключения шины PROFIBUS

На рисунке выше приведена схема подключения к терминалу, а кабель является стандартным кабелем PROFIBUS, который состоит из витой пары и экранированного слоя. Все узлы экранированного слоя кабеля PROFIBUS заземлены напрямую. Пользователи могут выбрать наиболее подходящий режим заземления на основе реальных условий.

Примечания:

При подключении станций убедитесь, что линия данных не перекручена. Экранированный кабель следует использовать, когда система работает в сильной электромагнитной среде, так как экранированный слой может улучшить работу ЭМС.

Если используется экранированный плетеный провод и экранированная фольга, оба их конца должны быть соединены с защитным заземлением и покрыты большим размером экранированного соединения, что обеспечивает надлежащую проводимость. Кроме того, рекомендуется изолировать линию передачи данных от линии высокого напряжения.

Не используйте короткую заглушку, когда скорость передачи данных превышает 500 Кбит / с, используйте штекер, доступный на рынке, для непосредственного подключения к входным и выходным кабелям данных, а подключение штекера коммуникационной карты можно включать или выключать на любом время без прерывания передачи данных других станций.

2. Структура данных информационных блоков PROFIBUS-DP

Режим шины PROFIBUS-DP обеспечивает быстрый обмен данными между мастер-станцией и HYSDVG. Доступ к HYSDVG осуществляется в соответствии с режимом «ведущий-ведомый». SVG всегда является подчиненным, и каждый подчиненный определяется точным адресом. Сообщение, переданное PROFIBUS, периодически принимает 16-разрядную (16-разрядную) передачу, а структура показана на рисунке. 4.

Рис.4Структура сообщения PROFIBUS-DP

Область параметров:

PKW1 – Parameter identification

PKW2–Array index number

PKW3- Parameter value 1

PKW4- Parameter value 2

Данные процесса:

CW - Control word (from host to slave, see Table 1)

SW - State word (from slave to host, see Table 3)

PZD - Process data (designated by user)

(Output [Reference value] from host to slave, input [actual value] from slave to host)

2.1 PZDarea (Область данных процесса)

Зона сообщения PZD предназначена для управления и контроля SVG. PZD, полученный на ведущей станции, и ведомое устройство всегда обрабатывается с наивысшим приоритетом, а приоритет обработки PZD выше, чем приоритет PKW, и самые последние действительные данные интерфейса всегда будут передаваться.

2.1.1 Управляющее слово (CW) и слово состояния (SW)

Управляющее слово (CW) - это основной режим для системы полевой шины для управления SVG. Он передается от хоста полевой шины к устройству SVG, а карта связи служит в качестве шлюза. SVG отвечает на основе информации о битовом коде управляющего слова и передает информацию о состоянии на хост через слово состояния (SW).

Содержание слова управления и слова состояния показано в таблице 1 и таблице 3. Информацию о битовых кодах, относящуюся к SVG, см. в руководстве по продукту SVG.

2.1.2 Значение задания

SVG может получать управляющую информацию в различных режимах, а также поддерживать коммуникационный модуль PROFIBUS (например, коммуникационную карту EC-TX-103). Режим связи PROFIBUS может устанавливать функциональные коды, связанные с работой, посредством кодов функций чтения / записи.

2.1.3 Фактическое значение

Фактическое значение - это 16-разрядное слово, которое содержит информацию, относящуюся к работе SVG. Функция мониторинга определяется SVG. Преобразование целых чисел, которое служит фактическим значением, отправленным хосту, зависит от выбранных функций. См. Соответствующее руководство по продукту SVG.

Содержание фактического значения приведено в таблице 4.

Инструкция: SVG всегда проверяет байт управляющего слова и контрольное значение.

2.1.4 Сообщение задачи (мастер-станция \rightarrow SVG)

Управляющее слово (CW):

Первым словом сообщения задачи PZD является управляющее слово SVG, значение каждого бита слова управления показано ниже:

Bit	Name	Value	Enter state/instruction
		1	Heartbeat enable
00	Heartbeat bit	0	Heartbeat disable
~ 4		1	Run enable
01	Run enable bit	0	Run disable
	0	1	Stop enable
02	Stop enable bit	0	Stop disable
		1	Fault reset enable
03	Fault reset enable bit	0	No fault reset enable
		1	Emergency-stop enable
04	Emergency-stop enable bit	0	No emergency-stop enable
05		1	QF/KM2 switch-on enable
05	QF/KM2 switch on	0	No QF/KM2 switch-on enable
~~		1	QF/KM2 switch-off enable
06	QF/KM2 switch off	0	No QF/KM2 switch-off enable
		1	Write enable enable
07	vvrite enable	0	No write enable enable
8~15			Reserved

Таблица 1 Управляющее слово SVG (CW)

Установленное значение (REF):

Второе - двенадцатое слово сообщения задачи - это основное значение REF настройки. Поскольку параметры, связанные с операцией, могут быть изменены PROFIBUS, установленное значение является зарезервированной функцией.

Таблица 2 Установленное значение

Word	Name	Value
	Invalid	00
0700	Reserved	0120
PZD2	Reserved	0120
~	Reserved	0120
PZDIZ	Reserved	0120
	Reserved	0120

2.1.5 Ответное сообщение (SVG мастер-станция)

Слово состояния (SW):

Первым словом сообщения ответа PZD является слово состояния SVG (SW), значение каждого бита слова состояния SVG выглядит следующим образом:

Таблица 3 Слово состояния (SW)

Bit	Name	Value	Enter state/instruction
00	Involid	1	Heartbeat feedback
00	IIIvaliu	0	No heartbeat feedback
01	Foult	1	Fault
01	Fault	0	No fault
02	Operation ready	1	Operation ready
02	Operation ready	0	Not ready
02	Logal romata stata	1	Local control state
03	Local remote state	0	Remote control state
04		1	In running
04	mrunnig	0	In stopping
05	In clorming	1	In alarming
05	in alanning	0	No alarm
06	Parallal mode	1	Parallel operation in parallel mode
00	Falallel 1100e	0	Non-parallel operation in parallel mode
7~15	Reserved		

Фактическое значение (ACT):

Второе - двенадцатое слово сообщения задачи PZD - это основное заданное значение ACT, фактическое значение основной частоты обеспечивается источником основного фактического значения.

Таблица 4 Фактическое значение

Word	Name	Value
	Invalid	00
	Main control fault type 1	01
	Main control fault type 2	02
8784	Main control fault type 3	03
PZD2	Chain link fault	04
~	Fault chain link number	05
PZD12	Fault user input terminal state	06
	Fault user output terminal state	07
	Alarm word	08
	Reserved	

2.2 Область РКW (Параметр идентификационной метки РКW1- область значения)

Область PKW указывает режим процесса интерфейса идентификации параметров. Интерфейс PKW - это своего рода механизм, а не физический интерфейс. Этот механизм определяет режим передачи параметра между двумя партнерами связи, например, значение параметра R / W.

2.2.1 Структура области РКW

⊲ Pa	arameter iden	tification (PKW	/)	Proce	ess data	
PKW1	PKW2	PKW3	PKW4	CW SW	PZD2 PZD2	
Request label Response label	Paramete r address	Parameter value error number	Parameter value			1

Рис.10 Область идентификации параметров графа

В циклической связи PROFIBUS-DPPKW состоит из четырех слов (16 бит), а определение для каждого слова показано ниже:

The 1st word

		The 1 st word PKW	1 (16 bits)	
	Bit 15~00	Task or response identification mark		0~7
The 2nd	word			
		The 2 nd word PKW	/2 (16 bits)	
	Bit 15~00	Basic parameter address	0~65535	
The 3rd v	word			
		The 3 rd word PKW	'3 (16 bits)	
	Bit 15~00	Parameter value (MSB)	00	
The 4th v	word			
		The 4 th word PKW	4 (16 bits)	
	Bit 15~00	Parameter value (LSB)	0~65535	

Инструкция: Если мастер-станция запрашивает значение параметра, значение в РКW3 и РКW4, отправленное с главной станции в SVG, станет недействительным.

2.2.2 Запрос задачи и ответ

При передаче данных в подчиненное устройство хост использует метку запроса, в то время как ведомое устройство использует метку ответа как свое положительное или отрицательное подтверждение. В таблице 5 и таблице 6 перечислены функции запроса / ответа.

Определение метки задачи PKW1 показано в таблице ниже:

Таблица 5 Определение метки задачи РКW1

Reque	st label (From host to slave)	al	
Request	Function	Positive confirmation	Negative confirmation
0	No task	0	_
1	Read	1, 2	3
2	Write	1	3 r 4
3	Reserved	2	3 r 4
4	Write RAM and FLASH	1	3 r 4

Определение метки ответа PKW1 показано в таблице ниже:

Таблица 6 Определение метки ответа PKW1

	Response label (From slave to host)
Confirmation number	Function
0	Illegal parameter number

	Response label (From slave to host)
Confirmation number	Function
1	Parameter value cannot be changed
2	Exceed the setting range
3	 Task cannot be executed and the following error numbers are returned: 0: Illegal parameter number 1: Parameter value cannot be changed (read-only parameter) 2: Exceed the setting range 3: Incorrect sub index number 4: Setting not allowed (only reset is available) 5: Data type is invalid 6: Task cannot be executed due to operation state 7: Unsupported request 8: Request cannot be completed due to communication error 9: Fault occurred when carrying out write operation in fixed memory area 10: Request failed due to overtime 11: Parameter cannot be assigned to PZD 12: The bit which cannot assign control word 13: Other error
4	No parameter modification authority

2.2.3 Пример PKW:

Пример 1: Чтение значения параметра

Прочитайте значение запущенного командного канала (текущий адрес командного канала равен 0x0001). Эту операцию можно реализовать, установив слово PKW1 в 1 и слово PKW2 на 0x0001. Возвращаемое значение текущего командного канала находится в PKW4.

Запрос (мастер-станция→SVG):

	PKW1		PKW1 PKW2		PKW3		PKW4		CW		PZD2		PZD3		 PZD	12
Requ est	00	01	00	01	00	00	00	00	хх	хх	хх	хх	хх	хх	 хх	хх

0200: Parameter address

— 0001: Require to read parameter value

Response (SVG \rightarrow master station):

	PKW1		PKW2 Pł		PK	PKW3		PKW4		CW		PZD2		D3	 PZD)12
Resp onse	00	01	00	01	00	00	00	01	хх	xx	xx	xx	хх	xx	 хх	xx
	<hr/>						、 、									

0001: Parameter value of address 0001H, indicate the remote extension network port command channel 0001: Response (parameter value is refreshed)

Пример 2. Изменение значения параметра (только для изменения ОЗУ)

Измените значение, выбранное функцией терминала S1 (адрес, выбранный функцией терминала S1, равен 0x0200). Эту операцию можно реализовать, установив слово PKW1 на 2 и PKW2 на 0x0200. Необходимо изменить значение, выбранное функцией терминала S1 (1: Управление запуском, 2: Аварийный сброс аварийного останова, 3: Ввод внешнего сбоя, 4: Управление остановкой, 5: Закрытие QF, 6: Управление QF открыто) в PKW4,

Запрос (мастер-станция→SVG):

Приложение 3

	PKW1		V1 PKW2		N2 PKW3		PKW4		CW		PZD2		PZD3		 PZD	12
Requ est	00	02	02	00	00	00	00	01	хх	хх	xx	xx	хх	хх	 хх	хх
	0001: Parameter value of address 200															

- 0002: Modify parameter value

Запрос (SVG→мастер-станция):

	PKW1		PKW1 PKW2		PKW3		PKW4		CW		PZD2		ΡZ	D3	 PZD12	
Resp onse	00	02	02	00	00	00	00	01	хх	хх	хх	xx	хх	хх	 хх	хх

_____ 0001: Response (Parameter value is refreshed)

Пример 3: Изменение значения параметра (как RAM, так и EEPROM)

Измените значение, выбранное функцией терминала S1 (адрес, выбранный функцией S-терминала, равен 0x0200). Эту операцию можно реализовать, установив PKW1 в 2 и PKW2 на 0x0200. Необходимо изменить значение, выбранное функцией терминала S1 в PKW4.

Запрос (мастер-станция→SVG):

	PK	W1	PK	W2	PK	W3	PK\	N4	CV	V	PZI	D2	ΡZ	D3	 PZD)12
Requ est	00	04	02	00	00	00	00	01	xx	хх	xx	хх	хх	хх	 хх	хх
	0001: Parameter value of address 200															
	-	0004: Modify parameter value														

Запрос (SVG→мастер-станция):

	PK	W1	PK	W2	PK	W3	PKV	V4	CV	V	PZI	D2	ΡZ	D3	 PZD	12
Resp onse	00	01	02	00	00	00	00	01	xx	хх	хх	xx	хх	XX	 xx	хх

— 0001: Response (Parameter value is refreshed)

2.2.4 Пример PZD:

Передача в зоне PZD реализуется путем установки кодов функций SVG. См. Руководство по эксплуатации SVG для соответствующих функциональных кодов.

Пример 1. Прочитайте данные процесса SVG

В этом примере параметр SVG выбирает «01: неисправность основного контроллера 1», фактическое значение передается как PZD3, и эта операция может быть реализована путем установки кода функции «PZD3» на 1. Эта операция является обязательной, пока этот параметр заменяется другими параметрами.

Ответ (SVG→мастер-станция):

	PK	W1	PK	W2	PK	N3	PKV	V4	CV	V	PZI	02	ΡZ	D3	 PZI	D12
Resp onse	хх	хх	хх	хх	хх	хх	00	01	 xx	хх						

2.3 Информация о неисправности

Плата связи EC-TX-103 оснащена двумя индикаторами неисправности, как показано на рисунке, а роли этих индикаторов показаны ниже:

Индикатор ошибок

LED no.	Наименование	Цвет	Функция
			ON - коммуникационная карта находится в режиме онлайн, и данные можно обменять.
1	Online\Онлайн	Green\Зеленый	OFF- Коммуникационная карта не находится в состоянии «онлайн».
2	Offline/fault\Оффлайн/ошибка	Red\Красный	 ОN-коммуникационная карта отключена, и данные не могут быть обменены. OFF-Коммуникационная карта не находится в состоянии «в автономном режиме». Частота мерцания 1 Гц - Ошибка конфигурации: длина набора данных пользовательских параметров во время инициализации отличается от настройки длины во время конфигурации сети. Частота мерцания 2 Гц - Ошибка данных параметров пользователя: Длина / содержание данных параметров пользователя, установленных во время инициализации, отличается от настройки длины х параметров пользователя, установленных во время инициализации, отличается от настройки длины / содержимого во время конфигурации сети.
			Частота мерцания 4 I ц - Ошибка инициализации ASIC связи PROFIBUS. ОFF–Диагностика закончена

Приложение4

Список основных функциональных параметров высоковольтного статического генератора переменного тока

Параметры функции SVG сгруппированы для каждой функции, и каждая функциональная группа содержит несколько кодов функций. Параметры заводских функций не могут быть изменены пользователями.

1. Инструкции для таблицы параметров функций показаны ниже:

1-й столбец «Код функции»: количество групп параметров параметров и параметров;

2-й столбец «Имя»: полное имя параметров функции;

3-й столбец «Подробное описание параметра»: подробное описание этого параметра функции;

4-й столбец «Диапазон настройки»: допустимый диапазон настройки параметра функции;

5-й столбец «Значение по умолчанию»: исходное заданное значение параметров функции;

6-й столбец «Изменение»: атрибут модификации параметров функции (может ли он быть изменен или нет), инструкции приведены ниже:

"О": означает, что значение настройки этого параметра может быть изменено, когда SVG находится в состоянии остановки или запуска;

"◎": означает, что установленное значение этого параметра не может быть изменено, когда SVG находится в рабочем состоянии;

"●": означает, что значение параметра фактически определяется значением, которое не может быть изменено;

(SVG автоматически ограничил атрибут модификации каждого параметра, чтобы избежать модификации пользователям пользователями.)

2. «Системные параметры» - это десятичная система (DEC). Если параметр представлен в шестнадцатеричной системе, то при редактировании параметров данные каждого бита независимы, а диапазон значений части бит может быть шестнадцатеричным (0-F).

3. Значение по умолчанию - это обновленное значение при восстановлении заводских значений по умолчанию; однако фактически обнаруженные или записанные значения не будут обновлены.

Имя	Подробное описание параметра	Диапазон настройки	Значение по умолчанию	Изменение	Адрес
Настройка режима работы	 0: Постоянный реактивный режим 1: Реактивный режим нагрузки 2: Режим постоянного напряжения 3: Режим постоянного коэффициента мощности 	0~4	0	Ø	0
Выбор команды «Пуск»	0: Локальное управление 1: Канал порта внутренней линии 2: MODBUS 3: Дистанционное (клеммы I\O) 4: Протокол связи	0~4	0	Ø	1
Выбор компенсации 3-фазного дисбаланса	0: Нет компнесации 1: Компенсация	0~1 Примечание: действует только в режиме Реактивной нагрузки	0	Ø	2

Группа «Базовые параметры»:

Отатический тенератор	рсактивной мощности очо				
Имя	Подробное описание параметра	Диапазон настройки	Значение по умолчанию	Изменение	Адрес
Выбор компенсации гармоник	0: Нет компнесации 1: Компенсация	0~1 примечание: действует	0	O	3
Выбор управления QF	0: Локальное ручное управление 1: Локальное автоматическое управление 2: Внешнее управление замыканием QF	0~2	0	O	4
Заданное значение постоянной реактивной мощности	-100.00~100.00MBap	-100.0~100.0	0.00MBap	O	5
Эталонное заданное значение постоянного напряжения шины переменного тока	000.00~500.00 кВ	0~500.00 кВ	10.00 кВ	O	6
Заданное значение постоянного коэффициента мощности	-1.000~1.000	-1.000~1.000	1.000	O	7
Выбор значения напряжения постоянного тока	0: Внутреннее значение 1: Выборзначения	0~1	0	O	8
Заданное значение опорного напряжения постоянного тока	0~42000 B	0 ~42000 B	9000 B	O	9
Выбор режима работы вентилятора	0: Ручное управление 1: Автоматическое управление	0~1	0	O	10
Количество резервированных звеньев цепи на фазу	Количество звеньев цепи, разрешенных для байпаса на фазу 0:Байпас цепи не разрешен 1: Не более одной линии на фазу	0~1	1	O	11
Выбор режима байпаса А-фазы	0: Внутренний байпас 1: Внешний байпас	0~1	0	O	12
Выбор байпаса А- фазы	0x000~0xFFF bit0: Звеноцепи 1 выборбайпса (0: нет байпаса; 1: байпас) bit11: Звеноцепи 12выборбайпса (0: нет байпаса; 1: байпас)	0x000~0xFFF	0x000	O	13
Выбор режима байпаса В-фазы	0: Внутренний байпас 1: Внешний байпас	0~1	0	O	14
Выбор байпаса В- фазы	0x000~0xFFF bit0: Звеноцепи 1 выборбайпса (0: нет байпаса; 1: байпас) bit11: Звеноцепи 12выборбайпса (0: нет байпаса; 1: байпас)	0x000~0xFFF	0x000	O	15
Выбор режима байпаса С-фазы	0: Внутренний байпас 1: Внешний байпас	0~1	0	O	16
Выбор байпаса С- фазы	0x000~0xFFF bit0: Звеноцепи 1 выборбайпса (0: нет байпаса; 1: байпас) bit11: Звеноцепи 12выборбайпса (0: нет байпаса; 1: байпас)	0x000~0xFFF	0x000	O	17
Восстановление параметров функции	0: Нет восстановления 1: Возврат к заводским настройкам	0~1	0	O	18

Приложение 4

Имя	Подробное описание параметра	Диапазон настройки	Значение по умолчанию	Изменение	Адрес
Верхний предел контроля напряжения	000.00~327.67V	000.00~327.67 V	11.00	0	19
Нижний предел контроля напряжения	000.00~327.67V	000.00~327.67 V	9.00	0	20
Верхний предел гистерезиса управления напряжением	000.00~327.67V	000.00~327.67 V	10.50	0	21
Нижний предел гистерезиса управления напряжением	000.00~327.67V	000.00~327.67 V	9.50	0	22

Группа настройки PI:

Имя	Подробное описание параметра	Диапазон настройки	Значение по умолчанию	Изменение	Адресс
Пропорциональное усиление регулировки напряжения постоянного тока	0.00~600.00	0.00~600.00	1.29	O	256
Интегральное усиление регулировки напряжения постоянного тока	0.00~600.00	0.00~600.00	7.31	0	257
Предел выходного напряжения постоянного тока	0.00~100.00%	0.00~100.00 %	100.00%	O	258
Усиление регулировки напряжения шины переменного тока	0.00~600.00	0.00~600.00	0.14	O	259
Интегральное усиление напряжения шины переменного тока	0.00~600.00	0.00~600.00	1.00	0	260
Предел выхода регулировки напряжения тока шины переменного тока	0.00~100.00%	0.00~100.00 %	100.00%	O	261
Пропорциональное усиление управляющего тока	0.00~600.00	0.00~600.00	67.57	O	262
Интегральное усиление управляющего тока	0.00~600.00	0.00~600.00	10.29	O	263
Предел выхода регулирующего тока	0.00~100.00%	0.00~100.00 %	100.00%	O	264

Группа входных клемм:

Имя	Подробное описание параметра	Диапазон настройки	Значение по умолчанию	Изменение	Адрес
Функция клеммы S1	1. Нет функции	0~10	0	O	512
ФункцияклеммыS2	2. Пуск (импульс)	0~10	0	O	513
ФункцияклеммыS3	 Аварииный останов Сброс ощибки (импульс) 	0~10	0	O	514
ФункцияклеммыS4	5. Внешняя неисправность	0~10	0	0	515
ФункцияклеммыS5 t	6. Останов (импульс)	0~10	0	0	516
ФункцияклеммыS6	 Управление отключениемQF/KM2(импульс) Управление включениемQF/KM2(импульс) 8~10: Резерв 	0~10	0	Ø	517
Настройка полярности входныхклемм	0x00~0x3F	0x00~0x3F	0	Ø	518
Времена цифрового фильтра	1~10	1~10	5	Ø	

Имя	Подробное описание параметра	Диапазон настройки	Значение по умолчанию	Изменение	Адрес
Коэффициент трансформации A/D0	0~65.535	0~65.535	1.077	O	519
Дрейф нуля A/D0	-32767~32767	-32767~32767	0	O	520
Коэффициент трансформацииА/D1	0~65.535	0~65.535	1.077	Ø	521
Дрейф нуляА/D1	-32767~32767	-32767~32767	0	O	522
Коэффициент трансформацииА/D2	0~65.535	0~65.535	1.077	Ø	523
Дрейф нуляА/D2	-32767~32767	-32767~32767	0	Ø	524
Коэффициент трансформацииА/D3	0~65.535	0~65.535	10.539Прим: 1	O	525
Дрейф нуляА/D3	-32767~32767	-32767~32767	0	O	526
Коэффициент трансформацииА/D4	0~65.535	0~65.535	10.539Прим: 1	O	527
Дрейф нуляА/D4	-32767~32767	-32767~32767	0	O	528
Коэффициент трансформацииА/D5	0~65.535	0~65.535	10.539Прим: 1	Ø	529
Дрейф нуляА/D5	-32767~32767	-32767~32767	0	O	530
Коэффициент трансформацииА/D6	0~65.535	0~65.535	21.240	O	531
Дрейф нуляА/D6	-32767~32767	-32767~32767	0	O	532
Коэффициент трансформацииА/D7	0~65.535	0~65.535	21.240	O	533
Дрейф нуляА/D7	-32767~32767	-32767~32767	0	O	534
Коэффициент трансформацииА/D8	0~65.535	0~65.535	1.077	O	535
Дрейф нуляА/D8	-32767~32767	-32767~32767	0	O	536
Коэффициент трансформацииА/D9	0~65.535	0~65.535	1.077	Ø	537
Дрейф нуляА/D9	-32767~32767	-32767~32767	0	O	538
Коэффициент трансформацииА/D10	0~65.535	0~65.535	21.24	O	539
Дрейф нуляА/D10 t	-32767~32767	-32767~32767	0	O	540
Коэффициент трансформацииА/D11	0~65.535	0~65.535	21.24	O	541
Дрейф нуляА/D11	-32767~32767	-32767~32767	0	O	542

Примечание 1: Если текущее преобразование устройства в канальной программе составляет одну тысячную от фактического значения, соответствующие коэффициенты преобразования канала AD (AD1, AD4, AD3) должны быть усилены в 1000 раз. Обратите внимание, что это не влияет на калибровку коэффициента трансформации; значение вычисления коэффициента трансформации было правильно рассмотрено, просто сохраните значение вычисления при калибровке коэффициента трансформации.

Группа выходных клемм:

Имя	Подробное описание параметра	Диапазон настройки	Значение по умолчанию	Изменение	Адрес
Выбор выходаRO1	1. Нет выхода	0~15	0	0	768
Выбор выходаRO2	2. Готовность	0~15	0	0	769
Выбор выходаRO3	 Работа Ошибка устройства 	0~15	0	0	770
Выбор выходаRO4	5. Авария устройства	0~15	0	0	771
Выбор выходаRO5	6. Блокировка устройства	0~15	0	0	772
Выбор выходаRO6	 Удаленное ∖локальное состояние Режим «Сон» 8~15: Нет выхода 	0~15	0	0	773
Выбор выходаАО1	1. Напряжение сети	0~10	0	0	774
Выбор выходаАО2	2. Устройствоvar	0~10	0	0	775
Выбор выходаАОЗ	3. Устройство А-фазный ток	0~10	0	0	776
Выбор выходаАО4	 Устройство В-фазный ток Устройство С-фазный ток 7~10: Резерв 	0~10	0	0	777
Нижний предел выхода АО1	0.00%~100.0%	0.00~100.0	0.0%	0	778
Соответствующий нижнему пределу выход АО1	4mA~20mA	4~20	4mA	0	779
Верхний предел выхода АО1	0.00%~100.0%	0.00~100.0	100.0%	0	780
Соответствующий верхнему пределу выход АО1	4mA~20mA	4~20	20mA	0	781
Нижний предел выхода АО1	0.00%~100.0%	0.00~100.0	0.0%	0	782
Соответствующий нижнемупределу выход АО2	4mA~20mA	4~20	4mA	0	783
Верхний предел выхода АО2	0.00%~100.0%	0.00~100.0	100.0%	0	784
Соответствующий верхнему пределу выход АО2	4mA~20mA	4~20	20mA	0	785
Нижний предел выхода АОЗ	0.00%~100.0%	0.00~100.0	0.0%	0	786
Соответствующий нижнему пределу выход АОЗ	4mA~20mA	4~20	4mA	0	787
Верхний предел выхода АОЗ	0.00%~100.0%	0.00~100.0	100.0%	0	788
Соответствующий верхнему пределу выход АОЗ	4mA~20mA	4~20	20.00mA	0	789
Нижний предел выхода АО4	0.00%~100.0%	0.00~100.0	0.0%	0	790
Соответствующий нижнему пределу выход	4mA~20mA	4~20	4mA	0	791
Верхний предел выходаАО4	0.00%~100.0%	0.00~100.0	100.0%	0	792
Соответствующий верхнему пределу выход	4mA~20mA	4~20	20.00mA	0	793

Группа записи ошибок:

		Диапазон	Значение по		
Имя	Подробное описание параметра	настройки	умолчанию	Изменение	Адрес
	DSP, каждый бит представляет собой				
	различный тип неисправности:				
	00: Нет ошибки (16 бит - все 0)				
	01: Сигнал тревоги устройства				
	02: Перегрузка по току программного				
	обеспечения				
	03: Аппаратная перегрузка по току				
	04: Ошибка перенапряжения сети				
	05: Ошибка пониженного напряжения сети				
	06: перенапряжение постоянного тока				
Тип 1 последней,	07: Общее пониженное напряжение				
основной ошибки	постоянного тока			•	1024
управления	08: Дисбаланс секи				
	09: Дисбаланс постоянного тока				
	10: Ошибка потери фазы				
	11: Ошибка установления связи DSP и				
	MCU				
	12: Неисправность начального				
	обнаружения устройства				
	13: Резерв				
	14: Неисправность обнаружение тока сети				
	15: Резерв				
	16: Ошибка перегрузки по току устройства				
	MCU, каждый бит представляет собой				
	различные типы ошибок:				
	00: Нет ошибки (16 бит - все 0)				
	01: Внешняя неисправность				
	02: Ошибка доступа к двери				
	03: Неисправность вентилятора				
	04: Тревога резервного питания				
	05: ИБП				
	06: Реакция перегрева реактора				
Тип 2 последней,	07: Неисправность датчика температуры				
основной ошибки				•	1025
управления					
	09. Ошиока ферроэлектрического режима 10: Неметровность MCLLи DSP				
	12: Арарийцая остацовка				
	12. Аварииная остановка 13. Чрезмерная оцимбиа автоматического				
	14: достигнуто рабочее время				
	15: Ошибка питания основного				
	контроппера				
	16: Отключение по перегреву реактора				
	00: Нет ошибки (16 бит - все 0)				
	01: Ошибка при зарядке				
	02: Ошибка при включенииQF				
	03: Ошибка при выключенииQF				
Тип 2 поополной	04: Ошибка при включенииКМ				
тип з последней,	05: Ошибка при выключенииКМ				1000
	06: Ошибка обратной связи заземляющего			-	1020
управления	разъединителя				
	07: Ошибка байпасной цепи				
	08: Ошибка связи PROFIBUS				
	09: Ошибка при параллельном режиме				
	работы				

		Диапазон	Значение по		
Имя	Подробное описание параметра	настройки	умолчанию	Изменение	Адресс
	10: Ошибка параллельной работы				
	Ethernet-связи				
	11: Ошибка параллельной работы / хоста				
	12:Ошибка при включенииКМ2				
	13: Ошибка при выключении КМ2				
Резерв				•	1027
Ошибка звена цели камисти бит			-	1021	
	представляет собой различные типы				
	ошибок:				
	00: Нет ошибки (16 бит - все 0)				
	01: Ошибка связи звена цели восхолящего				
	канала связи				
	02: Ошибка связи звена цепи нисходяшей				
	линии связи				
Последняя	03: Звено цепи - соединение не готово				
ошибка звена	04: Перенапряжение цепи			•	1028
цепи	05: Снижение напряжения цепи				
	06: Неисправность звена цепи				
	07: Перегрев звена цепи				
	08: Ошибка байпаса цепи				
	09: Защита от потери мощности цепи				
	10: Ошибка VCE верхнего моста				
	11: Ошибка нижнего моста VCE				
	12: Аппаратное перенапряжение				
	13: Цепочная ссылка не соответствует				
Резерв				•	1029
	Если номер звена цепи при ошибке равен				
	О, ЭТО ОЗНАЧАЕТ, ЧТО ОТСУТСТВУЕТ ОШИОКА				
	звена цени связи;				
Номер звена					
цепи при	R1~R12, 1~12 R1_R12, 12_24			•	1030
ошибке	C1~C12: 25~36				
	Когла имеется 8 звеньев цельи на фазу:				
	Δ1~Δ8· 1~8				
	B1~B8: 13~20				
	C1~C8: 25~32				
Выходной ток		•	1031		
Напряжение сети					1032
Напряжение звена	а цепи связи				1033
Цепная температу	/ра цепи			•	1034
Состояние конечн					1035
Напряжение шинь	и постоянного тока А-фазы				1030
Напряжение шины постоянного тока А-фазы			•	1038	
Напряжение шины постоянного тока в С-фазе			•	1039	
Резерв					1040
Резерв					1041
Резерв			•	1042	
Резерв					1043
Гезерв Тип 1 поспелней онимбии основного упровления					1044
тип т последней ошиоки основного управления					1045
Резерв				1048	
Последняя ошибка звена цепи				•	1049
Резерв	· · · · · · · · · · · · · · · · · · ·				1050
Номер звена цепи связи при последней ошибке					1051
Выходной ток при последней ошибке				1052	
напряжение сети	Напряжение сети при последней ошибке				

Имя	Подробное описание параметра	Диапазон настройки	Значение по умолчанию	Изменение	Адрес
Напряжение цепи цепи связи при последней ошибке					1054
Температура цепи при последней ошибке				•	1055
Состояние конечного входа пользователя при последней			•	1056	
ошибке					
Состояние конечного терминала пользователя при последней					1057
ошибке					
Напряжение шины постоянного тока на фазе при последней					1058
ошибке					
Напряжение шины	ы постоянного тока В-фазы при последней				1059
ошибке					
Напряжение шины	ы постоянного тока С-фазы при последней				1060
ошибке					
Резерв	· · · · · · · · · · · · · · · · · · ·		-		1061
Резерв					1062
Резерв				•	1063
Резерв					1064
Резерв					1065
Тип 1 текущей ош	ибки основного управления				1066
Тип 2 текущей ош	ибки основного управления				1067
Тип 3 текущей ош	ибки основного управления			•	1068
Резерв				•	1069
Неисправность зв	ена цепи			•	1070
Резерв				•	1071
Номер звена цепи	і при текущей ошибке			•	1072
Выходной ток при	текущей ошибке				1073
Напряжение сети	при текущей ошибке			•	1074
Напряжение звена	а цепи связи при текущей ошибке			•	1075
Температура звен	а цепи при текущей ошибке				1076
Состояние входны	ыхклемм пользователя при текущей ошибке			•	1077
Состояние выходи	ных клемм пользователя при текущей			•	1078
ошибке					
Напряжение шинь	ы постоянного тока А-фазы при текущей			•	1079
ошибке					
Напряжение шинь	ы постоянного тока В-фазы при текущей			•	1080
ошибке					
Напряжение шинь оцибке	и постоянного тока C-фазы при текущей			•	1081
Резерв			I		1082
					1083
Pesena				1084	
Pesena				1085	
Pereng					1086
i esche					1000

Группа параметров защит:

Имя	Подробное	Диапазон	Значение по	Изменение	Адресс
	описание параметра	настройки	умолчанию		
Допустимая пороговая величина сигнала	20.0%~130.0%	20.0~130.0s	100.0%	O	1280
тревоги устройства					
Время непрерывной сигнализации	0~180s	0~180s	60s	O	1281
устройства					
Общая защита от перенапряжения DC	20.0%~150.0%	20.0~150.0	120.0%	O	1282
Общий коэффициент защиты от	20.0%~150.0%	20.0~150.0	80.0%	O	1283
пониженного напряжения DC					
Защита от дисбаланса постоянного тока	0.0%~150.0%	0.0~150.0	20.0%	O	1284
Сопротивление защиты от	20.0%~150.0%	20.0~150.0	120.0%	O	1285
перенапряжения сети					
Степень защиты от пониженного	20.0%~150.0%	20.0~150.0	40.0%	O	1286
напряжения сети					
Соотношение защиты дисбаланса сети	0.0%~150.0%	0.0~150.0	4.0%	O	1287
Резервирование выбора звенацепи А-	0~65535	0~65535	0		1288
фазы					
	Подробное	Диапазон	Значение по		
--	--------------------	------------	-------------	-----------	--------
Имя	описание параметра	настройки	умолчанию	Изменение	Адресс
Резервирование выбора звена цепи	0~65535	0~65535	0	•	1289
В-фазы					
Резервирование выбора звена цепи	0~65535	0~65535	0	•	1290
С-фазы					
Время блокироки автоматического сброса	1~5	1~5	5	O	
Интервал времени автоматического	1~3600 сек	1~3600сек	60сек	O	
сброса блокировки					
Время ожидания подготовки к запуску	5.0~3600.0сек	5.0~3600.0	12.0 сек	0	
Время ожидания автоматического запуска	1.0~3600.0сек	1.0~3600.0	5.0	O	

Группа протоколы связи:

Имя	Подробное описание	Диапазон	Значение по	Изменение	Адрес
	параметра	настройки	умолчанию		
MSB локального IP-адреса	0~0XFFFF (MSB)	0~0XFFFF	0XC0A8	•	1536
LSB локального IP-адреса	0~0XFFFF (LSB)	0~0XFFFF	0X465		1537
MSB маски локальной подсети	0~0XFFFF (MSB)	0~0XFFFF	0XFFFF		1538
LSB маски локальной подсети	0~0XFFFF (LSB)	0~0XFFFF	0XFF00	•	1539
MSB локальных шлюзов	0~0XFFFF (MSB)	0~0XFFFF	0XC0A8	•	1540
LSB локальных шлюзов	0~0XFFFF (LSB)	0~0XFFFF	0X401	•	1541
MSB локального MAC	0~0XFFFF	0~0XFFFF	0X5254	•	1542
Средний бит локального МАС	0~0XFFFF	0~0XFFFF	0X4C19	•	1543
LSB локального MAC	0~0XFFFF	0~0XFFFF	0XF742	•	1544
Локальный адрес MODBUS	1~247, 0 - широковещательный адрес	1~247	1	0	1545
Настройка скорости передачи данных MODBUS	0: 1200BPS 1: 2400BPS 2: 4800BPS 3: 9600BPS 4: 19200BPS 5: 38400BPS	0~5	4	0	1546
Настройка проверки бит данных MODBUS	0: Нет проверки (N, 8, 2) для RTU 1: Четность (E, 8, 1) для RTU 2: Нечетная четность (O, 8, 1) для RTU	0~2	1	0	1547
Задержка ответа связи MODBUS	0~200ms	0~200	5	0	1548
Время сбоя связи MODBUS	0. 0~100.0 сек	0.0~100.0 сек	0	0	1549
Выбор обработки ошибок MODBUS	0~1 0: Процесс как ошибка 1: Нет процесса	0~1	0	0	1550
MSB порта сети расширения сети	0~0XFFFF (MSB)	0~0XFFFF	0XC0A8	O	1551
LSB внутреннего порта сети IP	0~0XFFFF (LSB)	0~0XFFFF	0X404	Ø	1552
MSB шлюза порта внутренней сети	0~0XFFFF (MSB)	0~0XFFFF	0XC0A8	O	1553
LSB шлюза порта внутренней сети	0~0XFFFF (LSB)	0~0XFFFF	0X401	O	1554
Тип полевой шины	0: Нет подключения 1: PROFIBUS	0~1	0	●	1555
Адрес модуля	0~99	0~99	2	0	1556
Получение PZD2		0~20	1	O	1557
Получение PZD3 Получение PZD4		0~20	2	O	1558
		0~20	3	O	1559
Получение PZD5	0: Недопустимо 1~20:	0~20	0	O	1560
Получение PZD6	Резерв	0~20	0	Ø	1561
Получение PZD7	· · · · ·	0~20	0	Ø	1562
Получение PZD8	1	0~20	0	O	1563
Получение PZD9		0~20	0	O	1564

Статический генератор реактивной мощности SVG Приложение 4 Изменение Имя Подробное описание Диапазон Значение по Адресс настройки умолчанию параметра Получение PZD10 0~20 0 1565 \bigcirc Получение PZD11 0~20 0 1566 \bigcirc Получение PZD12 0~20 1567 0 0 ОтправкаPZD2 0: Недопустимый 0~30 1 \bigcirc 1568 1: Тип неисправности ОтправкаPZD3 0~30 2 0 1569 главного контроллера 1 ОтправкаPZD4 0~30 3 1570 \bigcirc 2: Тип неисправности главного контроллера 2 ОтправкаPZD5 4 1571 0~30 0 3: Тип неисправности 5 ОтправкаPZD6 0~30 0 1572 главного контроллера 3 4: Ошибка звена цепи ОтправкаPZD7 0~30 6 0 1573 5: Номер ссылки на цепочку ОтправкаPZD8 0~30 7 0 1574 неисправностей ОтправкаPZD9 0~30 8 1575 6: Состояние входных 0 клемм пользователя ОтправкаPZD10 0~30 0 0 1576 7: Состояние выходных ОтправкаPZD11 0~30 0 1577 0 клемм пользователя 8: Сигнальное слово ОтправкаPZD12 0 1578 0~30 0 9~30: Резерв Время сбоя связи PROFIBUS 0.0~100.0 сек 0.0~100.0 сек 0.0 сек \bigcirc 1579

Группа заводских настроек:

Имя	Подробное описание параметра	Диапазон настройки	Значение по умолчанию	Изменение	Адрес
Установка на заводе					

Обеспечение качества

SVG разработан, спроектирован и изготовлен компанией FGI SCIENCE & TECHNOLOGY CO., LTD. строго в соответствии с соответствующими правилами, указанными в Законе о качестве продукции Китайской Народной Республики и соответствующих национальных технических стандартах, технических стандартах и технологиях предприятия.

Продукт FGI SCIENCE & TECHNOLOGY CO., LTD. управляется строго в соответствии со стандартами ISO 9001 2015 GB / T19001-2021 idt. Мы представляем и гарантируем, что качество предоставляемого продукта соответствует техническим стандартам предприятия, руководству по продукту и контракту или заказу.

Если какая-либо неисправность или дефект произойдут на устройстве в течение нормальной работы устройства в течение года с даты поставки продукта (подробнее см. Соглашение о подписке), FGI SCIENCE & TECHNOLOGY CO., LTD. предложит бесплатный ремонт или заменит детали и компоненты бесплатно. Для пользователей, выполняющих ввод в эксплуатацию через шесть месяцев после поставки устройства, компания FGI SCIENCE & TECHNOLOGY CO., LTD. должна сократить срок бесплатного обслуживания (см. Соглашение о подписке для получения подробной информации). Что касается установки и ошибок отложенного устройства, неисправности или дефекты произошли вне нормального диапазона применения, компания FGI SCIENCE & TECHNOLOGY CO., LTD. предоставит пользователям надежную и своевременную техническую поддержку и обслуживание. Это гарантийное обслуживание не распространяется на какие-либо устройства (такие как силовой трансформатор, двигатель и т. д.), изготовленные другими поставщиками, деталями и устройствами, которые были отремонтированы или изменены, и компоненты.

Гарантийное соглашение

Мы обещаем, что наша компания (далее именуемая «производитель») проводит бесплатное техническое обслуживание и ремонт продукта, который имеет какие-либо ошибки или повреждения в обычных условиях эксплуатации для клиентов со дня покупки.

1. Бесплатный гарантийный срок составляет 12 месяцев после даты покупки продукта (за исключением экспортируемой продукции и нестандартных продуктов)

2. Продукт можно заряжать, чтобы ремонтировать в любое время после даты покупки.

3. Исключение: следующие 12-месячные бесплатные гарантийные услуги не распространяются на следующие неисправности:

(1) Неисправности, вызванные неправильными операциями, которые не соответствуют «Руководству по эксплуатации»;

(2) Неисправности, вызванные несанкционированным ремонтом или ремонтом;

(3) Ошибки, вызванные неправильными операциями, которые не входят в стандартный диапазон применения;

(4) Аномальное старение или неисправности, вызванные плохой средой использования;

(5) Повреждения, вызванные землетрясением, пожаром, наводнением, громом, аномальным напряжением и другими причинами, вызванными форс-мажорными обстоятельствами;

(6) Повреждения, вызванные ненадлежащей перевозкой или потерей продукта, вызванные другими внешними силами (режим транспорта выбирается надлежащим образом клиентами, наша компания может помочь в обработке процедур доставки)

4. Услуги бесплатного обслуживания и ремонта не распространяются на следующие ситуации:

(1) Бренд, товарный знак, серийный номер и фирменная табличка, указанные в продукте, повреждены и не могут быть прочитаны;

(2) Клиент не выполняет оплату товаров в соответствии с договором купли-продажи, подписанным обеими сторонами.

(3) Клиент скрывает ошибочные операции, возникающие при монтаже, подключении, эксплуатации, обслуживании и других процессах.

FGI SCIENCE & TECHNOLOGY CO., LTD.

Гарантийный талон

Имя покупателя					
Адрес клиента					
Контакт	Телефон				
Модель продукта	Код продукта				
Дата покупки	факс				
Время сбоя	Код ошибки				
Применение					
Название агента /	Контактный номер				
гарантийный центр Аномальные шумы		I	'		
произошли во время	Наличие дыма\	возгорания	Максимальный ток нагрузки до аварии:		
аварии?	во время авари	NI :			
□Да⊡Hет	⊔да∟пет				

Примечание. Заполните эту карту и отправьте ее по факсу или поместите ее вместе с неисправным продуктом, спасибо!

Для заметок:

FGI SCIENCE & TECHNOLOGY CO., LTD.

Electric Power:

- SVG
- Servo & Motion Control Intelligent Elevator Control System Solar Inverter
 - UPS
- Motor & Electric Spindle PLC Traction Drive
 - Online Energy Management System